-
实变函数与泛函分析概要(第三版)(第二册)
《实变函数与泛函分析概要2》第三版保持了内容精选、适用性较广并便于教学的特色,认真参考不少高校教师的宝贵建议,如删去了非线性泛函内容,增加了Banach空间解析算子演算,对Hilbert空间自伴紧算子作了较详阐述。第二册共五章:第六章介绍距离空间,包括完备性、紧性及不动点定理。第七章介绍Banach空间与Hilbert空间基础概念,包括基与规范正交系。第八章讨论了Banach空间上有界线性算子。对开映射定理、线性泛函延拓定理及共鸣定理进行了详细论证并给出了应用。Hilbert空间上有界线性算子在第九章介绍,特别是讨论了自伴算子的谱分解。对酉算子、正常算子的谱分解则给予初步介绍。至于广义函数初步,在第十章给出。每章后给出小结,并附有大量习题。一部分内容附上*号,初学时可以略去。 《实变函数与泛函分析概要2》可作为综合大学、理工大学、师范院校的数学与应用数学、计算数学、统计数学等专业的教材,也可作为有关研究生、自学者的参考用书。所需预备知识为数学分析、线性代数、复变函数、微分方程及《实变函数与泛函分析概要2》第一册的基本内容。 -
Structure and Randomness
-
寻找你的幸运星-概率的秘密-可怕的科学
《可怕的科学•经典数学系列:寻找你的幸运星•概率的秘密》为可怕的科学系列之一。《可怕的科学》的一系列内容和形式的运作使青少年读者不由自主地喜欢它们,在快乐中学习,丝毫没有记忆知识的枯燥,反而成为一种愉快的游戏。比游戏过瘾,比卡通搞笑,比上网刺激!学习与搞笑的奇特组合,读科学书也像读哈里·波特那样过瘾。 -
Calculus of Variations
First 6 chapters include theory of fields and sufficient conditions for weak and strong extrema. Chapter 7 considers application of variation methods to systems with infinite degrees of freedom, and Chapter 8 deals with direct methods in the calculus of variations. Problems follow each chapter and the 2 appendices. -
The Mathematical Theory of Communication
Scientific knowledge grows at a phenomenal pace-but few books have had as lasting an impact or played as important a role in our modern world as "The Mathematical Theory of Communication", published originally as a paper on communication theory in the "Bell System Technical Journal" more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic. -
Functional Analysis (Pure and Applied Mathematics
Includes sections on the spectral resolution and spectral representation of self adjoint operators, invariant subspaces, strongly continuous one-parameter semigroups, the index of operators, the trace formula of Lidskii, the Fredholm determinant, and more. * Assumes prior knowledge of Naive set theory, linear algebra, point set topology, basic complex variable, and real variables. * Includes an appendix on the Riesz representation theorem.