-
计算物理
《计算物理(第2版)》是计算物理领域的一本优秀教材。它紧扣一些非常基本但难以解析求解的物理问题逐步展开,围绕各个物理学专题介绍了物理学研究中各种基本的计算机数值模拟方法,深入浅出地讨论其理论基础和实际应用,着重于解决实际物理问题的基本数值方法。这样可以使读者通过学习,对物理学中应用的主要计算技术有一个全面的了解,从而具有利用计算机进行数值计算解决复杂体系物理问题的能力。 -
A Modern Introduction to Quantum Field Theory
The importance and the beauty of modern quantum field theory resides in the power and variety of its methods and ideas, which find application in domains as different as particle physics, cosmology, condensed matter, statistical mechanics and critical phenomena. This book introduces the reader to the modern developments, assuming no previous knowledge of quantum field theory. Along with standard topics like Feynman diagrams, the book discusses effective lagrangians, renormalization group equations, the path integral formulation, spontaneous symmetry breaking and non-abelian gauge theories. The inclusion of more advanced topics will also make this a most useful book for graduate students and researchers. -
Spinors and Space-Time
This volume introduces and systematically develops the calculus of 2-spinors. This is the first detailed exposition of this technique which leads not only to a deeper understanding of the structure of space-time, but also provides shortcuts to some very tedious calculations. Many results are given here for the first time. -
The Variational Principles of Mechanics
Philosophic, less formalistic approach to perennially important field of analytical mechanics. Model of clear, scholarly exposition at graduate level with coverage of basic concepts, calculus of variations, principle of virtual work, equations of motion, relativistic mechanics, much more. First inexpensive paperbound edition. Index. Bibliography. -
Statistical Mechanics
In each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics - a field rooted in physics and chemistry whose ideas and methods are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe. -
The Physics of Superheroes
The Physics of Superheroesapplies the reality of physics to the fantasy of comic books. James Kakalios explores the scientific plausibility of the powers and feats of the most famous superheroes—and discovers that in many cases the comic writers got their science surprisingly right. Along the way he provides an engaging and witty commentary while introducing the lay reader to both classic and cutting-edge concepts in physics, including: • What Superman’s strength can tell us about the Newtonian physics of force, mass, and acceleration • How Iceman’s and Storm’s powers illustrate the principles of thermal dynamics • The physics behind the death of Spider-Man’s girlfriend Gwen Stacy • Why physics professors gone bad are the most dangerous evil geniuses!