-
Real Analysis
The first three editions of H.].Royden’S Real Analysis have contributed to the education of generation so fm a them atical analysis students.This four the dition of Real Analysispreservesthe goal and general structure of its venerable predecessors——to present the measure theory.integration theory.and functional analysis that a modem analyst needs to know. The book is divided the three parts:Part I treats Lebesgue measure and Lebesgueintegration for functions of a single real variable;Part II treats abstract spaces topological spaces,metric spaces,Banach spaces,and Hilbert spaces;Part III treats integration over general measure spaces.together with the enrichments possessed by the general theory in the presence of topological,algebraic,or dynamical structure. The material in Parts II and III does not formally depend on Part I.However.a careful treatment of Part I provides the student with the opportunity to encounter new concepts in afamiliar setting,which provides a foundation and motivation for the more abstract conceptsdeveloped in the second and third parts.Moreover.the Banach spaces created in Part I.theLp spaces,are one of the most important dasses of Banach spaces.The principal reason forestablishing the completeness of the Lp spaces and the characterization of their dual spacesiS to be able to apply the standard tools of functional analysis in the study of functionals andoperators on these spaces.The creation of these tools is the goal of Part II. -
Real Analysis
"Real Analysis" is the third volume in the "Princeton Lectures in Analysis", a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After setting forth the basic facts of measure theory, Lebesgue integration, and differentiation on Euclidian spaces, the authors move to the elements of Hilbert space, via the L2 theory. They next present basic illustrations of these concepts from Fourier analysis, partial differential equations, and complex analysis. The final part of the book introduces the reader to the fascinating subject of fractional-dimensional sets, including Hausdorff measure, self-replicating sets, space-filling curves, and Besicovitch sets. Each chapter has a series of exercises, from the relatively easy to the more complex, that are tied directly to the text. A substantial number of hints encourage the reader to take on even the more challenging exercises. As with the other volumes in the series, "Real Analysis" is accessible to students interested in such diverse disciplines as mathematics, physics, engineering, and finance, at both the undergraduate and graduate levels. -
实分析
《实分析》由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。关于《实分析》的详细介绍,请见“影印版前言”。