-
微分几何讲义
本书是在作者一系列演讲的讲稿基础上整理而成的,已成为整体微分几何方面的一本经典著作。它以拓扑、代数几何为基础,以分析为主要工具,论述了几何学中的某些线性和非线性问题。 本书内容包括:比较定理与梯度估计、负曲率流形上的调和函数、reimann流形上的特征值问题、reimann流形上的热核、纯量曲率的共形形变、局部共形平坦流形等。书中还包括了丘成桐教授撰写的几何中的非线性分析、几何中未解决的问题。几何学未来的发展、几何与分析回顾、复几何的历史及前景等综合性论述与演讲辞,宏观和精辟地描述了几何学中的重要问题,展示了该学科的历史和未来发展前景。 本书可供高等院校数学系高年级学生,研究生作教学用书,也可供现代几何和分析方面的教师及研究人员参考。 -
微分几何讲义
本书系统地论述了微分几何的基本知识。作者用前3章,以及第6章共计4章的篇幅介绍了流形、多重线性函数、向量场、外微分、李群和活动标架等基本知识和工具。基于上述基础知识,论述了微分几何的核心问题,即联络、黎曼几何、以及曲面论。第7章是当前十分活跃的研究领域——复流形。陈省身先生是此研究领域的大家,此章包含有作者独到、深刻的见解和简捷、有效的方法。第8章的Finsler几何是本书第2版新增加的一章,它是陈省身先生近年来一直倡导的研究课题,其中Chern联络具有突出的性质,它使得黎曼几何成为Finsler几何的特殊情形。最后两个附录,介绍了大范围曲线论和曲面论,以及微分几何与理论物理关系的论述,为这两个活跃的前沿领域提出了不少进一步的研究课题。 此书可作为高校数学与理论物理专业高年级本科生和研究生教材,也可供从事物理和数学等相关学科研究人员参考。如果从双语教学角度来考虑,它无疑也是理想的候选者。