-
Introduction to Graph Theory
For undergraduate or graduate courses in Graph Theory in departments of mathematics or computer science. This text offers a comprehensive and coherent introduction to the fundamental topics of graph theory. It includes basic algorithms and emphasizes the understanding and writing of proofs about graphs. Thought-provoking examples and exercises develop a thorough understanding of the structure of graphs and the techniques used to analyze problems. The first seven chapters form the basic course, with advanced material in Chapter 8. -
C数值算法
本书编写了300多个实用而有效的数值算法C语言程序。其内容包括:线性方程组的求解,逆矩阵和行列式计算,多项式和有理函数的内插与外推,函数的积分和估值,特殊函数的数值计算,随机数的产生,非线性方程求解,傅里叶变换和FFT,谱分析和小波变换,统计描述和数据建模,常微分方程和偏微分方程求解,线性预测和线性预测编码,数字滤波,格雷码和算术码等。全书内容丰富,层次分明,是一本不可多得的有关数值计算的C语言程序大全。本书每章中都论述了有关专题的数学分析、算法的讨论与比较,以及算法实施的技巧,并给出了标准C语言实用程序。这些程序可在不同计算机的C语言编程环境下运行。 本书可作为从事科学计算的科技工作者的工具书,计算机软件开发者的参考书,也可以作为大学本科生和研究生的参考书或教材。 -
MATLAB在数学建模中的应用
《MATLAB在数学建模中的应用》从数学建模的角度介绍了MATLAB的应用。《MATLAB在数学建模中的应用》的4位作者均具有实际的数学建模参赛经历和竞赛指导经验。书中内容完全是根据数学建模竞赛的需要而编排的,涵盖了绝大部分数学建模问题的MATLAB求解方法。 《MATLAB在数学建模中的应用》内容分上下两篇。上篇介绍数学建模中常规方法MATLAB的实现,包括MATLAB交互、数据建模、程序绘图、灰色预测、规划模型等方法;还介绍了各种高级方法MATLAB的实现,包括遗传算法、粒子群算法、模拟退火算法、人工神经网络、小波分析、动态仿真、数值模拟等。下篇以真实的数学建模赛题为案例,介绍了如何用MATLAB求解实际的数学建模问题,给出了详细的建模过程和程序。书中的附件部分介绍了作者在建模竞赛中屡获大奖的经验。相信这些经验对准备参加数学建模竞赛的读者会有所帮助。 《MATLAB在数学建模中的应用》特别适合作为数学建模竞赛的培训教材或参考用书,也可作为大学“数学实验”和“数学建模”以及“数据挖掘”课程的参考用书,还可以作为广大科研人员、学者、工程技术人员的参考用书。 -
Algorithmic Puzzles
Algorithmic puzzles are puzzles involving well-defined procedures for solving problems. This book will provide an enjoyable and accessible introduction to algorithmic puzzles that will develop the reader's algorithmic thinking. The first part of this book is a tutorial on algorithm design strategies and analysis techniques. Algorithm design strategies - exhaustive search, backtracking, divide-and-conquer and a few others - are general approaches to designing step-by-step instructions for solving problems. Analysis techniques are methods for investigating such procedures to answer questions about the ultimate result of the procedure or how many steps are executed before the procedure stops. The discussion is an elementary level, with puzzle examples, and requires neither programming nor mathematics beyond a secondary school level. Thus, the tutorial provides a gentle and entertaining introduction to main ideas in high-level algorithmic problem solving. The second and main part of the book contains 150 puzzles, from centuries-old classics to newcomers often asked during job interviews at computing, engineering, and financial companies. The puzzles are divided into three groups by their difficulty levels. The first fifty puzzles in the Easier Puzzles section require only middle school mathematics. The sixty puzzle of average difficulty and forty harder puzzles require just high school mathematics plus a few topics such as binary numbers and simple recurrences, which are reviewed in the tutorial. All the puzzles are provided with hints, detailed solutions, and brief comments. The comments deal with the puzzle origins and design or analysis techniques used in the solution. The book should be of interest to puzzle lovers, students and teachers of algorithm courses, and persons expecting to be given puzzles during job interviews. -
Discrete Mathematics and Its Applications
Discrete Mathematics and its Applications is a focused introduction to the primary themes in a discrete mathematics course, as introduced through extensive applications, expansive discussion, and detailed exercise sets. These themes include mathematical reasoning, combinatorial analysis, discrete structures, algorithmic thinking, and enhanced problem-solving skills through modeling. Its intent is to demonstrate the relevance and practicality of discrete mathematics to all students. The Fifth Edition includes a more thorough and linear presentation of logic, proof types and proof writing, and mathematical reasoning. This enhanced coverage will provide students with a solid understanding of the material as it relates to their immediate field of study and other relevant subjects. The inclusion of applications and examples to key topics has been significantly addressed to add clarity to every subject. True to the Fourth Edition, the text-specific web site supplements the subject matter in meaningful ways, offering additional material for students and instructors. Discrete math is an active subject with new discoveries made every year. The continual growth and updates to the web site reflect the active nature of the topics being discussed. The book is appropriate for a one- or two-term introductory discrete mathematics course to be taken by students in a wide variety of majors, including computer science, mathematics, and engineering. College Algebra is the only explicit prerequisite. -
计算几何
《计算几何:算法与应用》(第2版)的前4章对几何算法进行了讨论,包括几何求交、三角剖分、线性规划等,其中涉及的随机算法也是《计算几何:算法与应用》(第2版)的一个鲜明特点。第5章至第10章介绍了多种几何结构,包括几何查找、kd树、区域树、梯形图、Voronoi图、排列、Delaunay三角剖分、区间树、优先查找树以及线段树等。第11章至第16章结合实际问题,继续讨论了若干几何算法及其数据结构,包括高维凸包、空间二分及BSP树、运动规划、网格生成及四叉树、最短路径查找及可见性图、单纯性区域查找及划分树和切分树等,这些也是对前十章内容的进一步深化。