-
赤裸裸的未来
全书主题聚焦于未知与未来,但论述绝非建立在想象之上的空中楼阁,其间穿插着大量事例,或基于客观现实,或依据科学推测,生动有趣。 塔克尔通过大量的访谈和调查,约见各领域的权威人士,积累了极为丰富的素材,提取了他们有关现实的观点和对未来的预期,为我们展开了有关未来社会各领域的翔实可信的图景,讲述的虽是前沿科技主题,内容却平实亲和。 就个人而言,我们生活在一个“超级透明”的世界,我们泄露出去的海量信息无处不在。若将这些信息收集起来,加以分析,就能勾勒出每一个人的真实性格、内心偏好,乃至可以预测每个人的命运。 就时代而言,作者大胆预言:“大数据时代”只不过是一朵小浪花,终将会被更新、更前沿的“物联网时代”取代,并以灾难预测、流行病预防、犯罪防治、潜能开发、情绪管理、恋爱情感、个性化学习、娱乐私人定制等领域为例,描绘了一个富有激情的美好未来。 案例大多发生在海外,但在国内各领域中都能找到其缩影或前兆,物联网、遥感等高尖信息化的潮流终将席卷全球。本书具有先锋意义。 -
复杂性
本书探索了复杂性的本性,思考了它对我们世界的影响意义,以及我们如何在复杂性内管理我们的事物。作者指出,科学的进步也要求技术的不断增强,伴随着问题的产生速度大于解决速度,科学和技术的渐增复杂性使我们面临着较多的管理难题和决策难题。 -
数据科学实战
• 统计推断、探索性数据分析(EDA)及数据科学工作流程 • 算法 • 垃圾邮件过滤、朴素贝叶斯和数据清理 • 逻辑回归 • 金融建模 • 推荐引擎和因果关系 • 数据可视化 • 社交网络与数据新闻 • 数据工程、MapReduce、Pregel和Hadoop -
电商大数据——用数据驱动电商和商业案例解析
《电商大数据——用数据驱动电商和商业案例解析》重点介绍了电子商务数据驱动的理论和商业案例。《电商大数据——用数据驱动电商和商业案例解析》作者具有丰富的电商团队数据化管理与运营经验。全书共分三篇。上篇主要介绍了电子商务的战略、战术和数据驱动的思想,有助于读者深入了解电商模式;虽然上篇皆是从宏观层面切入,但是基本都使用了定量的描述方式。中篇介绍了数据如何产生实实在在的生产力,主要包括建立数据化体系的方法、广告的投放策略、艺术设计与数据驱动的融合。下篇是大数据案例,主要包括量化管理客服团队、大数据供应链管理、大型促销活动节点管理、客户“怪诞”行为研究、CRM 及基于网络爬虫调整架上库存。 在《电商大数据——用数据驱动电商和商业案例解析》的目录中给出了200 组客户67 个维度指标的真实数据,这些源数据是非常珍贵的资源,为客户行为研究提供了不可或缺的基础资料。 《电商大数据——用数据驱动电商和商业案例解析》适合独立B2C 商城的高管、各种电商平台的店长和数据驱动相关从业者使用,也适合作为在校电子商务本科生和研究生的参考用书。 -
数据掘金
电商坐拥互联网行业最丰富的用户数据金矿,却很少有人从中挖掘出真金白银。《数据掘金——电子商务运营突围》一书旨在打破这一困境,一步一步引导从业者以数据为核心来运营网站或网店。本书用浅显的文字与独特的视角,不仅成功解读电商数据运营之惑,更呈现大量数据分析和挖掘的必要基础知识及实用相关工具。在通过阅读轻松掌握电商数据运营须关注的要点与方法之后,读者还可有针对性地从书中选择学习如何利用数据来完成——流量获取优化、广告投放、客户分析,以及客户价值提升等一系列电商运营要务。 《数据掘金——电子商务运营突围》一书主要写给电商从业人员,无论是中小电子商务的运营人员、数据分析人员,还是大公司负责电子商务的策略官、市场官和运营官,都能从本书中找到自己所需且急需的有价值内容。 -
Hadoop实战
本书是一本系统且极具实践指导意义的Hadoop工具书和参考书。内容全面,对Hadoop整个技术体系进行了全面的讲解,不仅包括HDFS和MapReduce这两大核心内容,而且还包括Hive、HBase、Mahout、Pig、ZooKeeper、Avro、Chukwa等与Hadoop相关的子项目的内容。实战性强,为各个知识点精心设计了大量经典的小案例,易于理解,可操作性强。 全书一共18章:第1章全面介绍了Hadoop的概念、优势、项目结构、体系结构,以及它与分布式计算的关系;第2章详细讲解了Hadoop集群的安装和配置,以及常用的日志分析技巧;第3章分析了Hadoop在Yahoo!、eBay、Facebook和百度的应用案例,以及Hadoop平台上海量数据的排序;第4-7章深入地讲解了MapReduce计算模型、MapReduce应用的开发方法、MapReduce的工作机制,同时还列出了多个MapReduce的应用案例,涉及单词计数、数据去重、排序、单表关联和多表关联等内容;第8-11章全面地阐述了Hadoop的I/O操作、HDFS的原理与基本操作,以及Hadoop的各种管理操作,如集群的维护等;第12-17章详细而系统地讲解了Hive、HBase、Mahout、Pig、ZooKeeper、Avro、Chukwa等所有与Hadoop相关的子项目的原理及使用,以及这些子项目与Hadoop的整合使用;第18章以实例的方式讲解了常用Hadoop插件的使用和Hadoop插件的开发。 本书既适合没有Hadoop基础的初学者系统地学习,又适合有一定Hadoop基础但是缺乏实践经验的读者实践和参考。