-
Problem-Solving Strategies
A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market. -
泛函分析
he present book is based on lectures given by the author at the University of Tokyo during the past ten years. It is intended as a textbook to be studied by students on their own or to be used in a course on Functional Analysis, i.e., the general theory of linear operators infunction spaces together with salient features of its application to diverse fields of modem and classical analysis. Necessary prerequisites for the reading of this book are summarized,with or without proof, in Chapter 0 under titles: Set Theory, Topological Spaces, Measure Spaces and Linear Spaces. Then, starting with the chapter on Semi-norms, a general theory of Banach and Hilbert spaces is presented in connection with the theory of generalized functions of S. L. SOBOLEV and L. SCHWARTZ. While the book is primarily addressed to graduate students, it is hoped it might prove useful to research mathematicians, both pure and applied. The reader may pass, e.g., fromChapter IX (Analytical Theory. of Semi-groups) directly to Chapter XIII (Ergodic Theory and Diffusion Theory) and to Chapter XIV (Integration of the Equation of Evolution). Such materials as "Weak Topologies and Duality in Locally Convex Spaces" and "Nuclear Spaces" are presented in the form of the appendices to Chapter V and Chapter X,respectively. These might be skipped for the first reading by those who are interested rather in the application of linear operators. -
数值最优化
本书作者现任美国西北大学教授,多种国际权威杂志的主编、副主编。作者根据在教学、研究和咨询中的经验,写了这本适合学生和实际工作者的书。本书提供连续优化中大多数有效方法的全面的最新的论述。每一章从基本概念开始,逐步阐述当前可用的最佳技术。 本书强调实用方法,包含大量图例和练习,适合广大读者阅读,可作为工程、运筹学、数学、计算机科学以及商务方面的研究生教材,也可作为该领域的科研人员和实际工作人员的手册。 总之,作者力求本书阅读性强,内容丰富,论述严谨,能揭示数值最优化的美妙本质和实用价值。 -
测度论
My main purpose in this book is to present a unified treatment of that part of measure theory which in recent years has shown itself to be most useful for its applications in modern analysis. If I have accomplished my purpose, then the book should be found usable both as a text for students and as a source of reference for the more advanced mathematician. I have tried to keep to a minimum the amount of new and unusual terminology and notation. In the few places where my nomenclature differs from that in the existing literature of measure theory, I was motivated by an attempt to harmonize with the usage of other parts of mathematics. There are, for instance, sound algebraic reasons for using the terms "lattice" and "ring" for certain classes of sets--reasons which are more cogent than the similarities that caused Hausdorff to use "ring" and "field." -
微分几何讲义
本书系统地论述了微分几何的基本知识。作者用前3章,以及第6章共计4章的篇幅介绍了流形、多重线性函数、向量场、外微分、李群和活动标架等基本知识和工具。基于上述基础知识,论述了微分几何的核心问题,即联络、黎曼几何、以及曲面论。第7章是当前十分活跃的研究领域——复流形。陈省身先生是此研究领域的大家,此章包含有作者独到、深刻的见解和简捷、有效的方法。第8章的Finsler几何是本书第2版新增加的一章,它是陈省身先生近年来一直倡导的研究课题,其中Chern联络具有突出的性质,它使得黎曼几何成为Finsler几何的特殊情形。最后两个附录,介绍了大范围曲线论和曲面论,以及微分几何与理论物理关系的论述,为这两个活跃的前沿领域提出了不少进一步的研究课题。 此书可作为高校数学与理论物理专业高年级本科生和研究生教材,也可供从事物理和数学等相关学科研究人员参考。如果从双语教学角度来考虑,它无疑也是理想的候选者。 -
Numerical Optimization
Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.