-
Big Data
National Bestseller “No other book offers such an accessible and balanced tour of the many benefits and downsides of our continuing infatuation with data.”—Wall Street Journal “What I’m certain about is that Big Data will be the defining text in the discussion for some time to come.”—Forbes.com It seems like “big data” is in the news every day, with new examples of how powerful algorithms are teasing out the hidden connections between seemingly unrelated things. Whether it is used by the NSA to fight terrorism or by online retailers to predict customers’ buying patterns, big data is a revolution occurring around us, in the process of forever changing economics, science, culture, and the very way we think. But it also poses new threats, from the end of privacy as we know it to the prospect of being penalized for things we haven’t even done yet, based on big data’s ability to predict our future behavior. Big Data is the first big book about this earthshaking subject, with two leading experts explaining what big data is, how it will change our lives, and what we can do to protect ourselves from its hazards. -
多变量分析
《多变量分析:SPSS的操作与应用》所介绍的多变量分析技术,除了SPSS/Base功能外,也针对Advanced等模块的功能加以说明,如平均数检定、一般线性模式、因素分析、集群分析、区别分析、回归分析等,并探讨一般书上少见的多元尺度法、TREE、Logistic、规则相关分析、联合分析、时间数列分析等进阶的多变量分析。此外,有关SPSS的外挂程序,包括结构方程模型AMOS与数据探勘Clementine等也多有着墨。 -
机器学习
这本书为机器学习技术提供了一些非常棒的案例研究。它并不想成为一本关于机器学习的工具书或者理论书籍,它注重的是一个学习的过程,因而对于任何有一些编程背景和定量思维的人来说,它都是不错的选择。 ——Max Shron OkCupid 机器学习是计算机科学和人工智能中非常重要的一个研究领域,近年来,机器学习不但在计算机科学的众多领域中大显身手,而且成为一些交叉学科的重要支撑技术。本书比较全面系统地介绍了机器学习的方法和技术,不仅详细阐述了许多经典的学习方法,还讨论了一些有生命力的新理论、新方法。 全书案例既有分类问题,也有回归问题;既包含监督学习,也涵盖无监督学习。本书讨论的案例从分类讲到回归,然后讨论了聚类、降维、最优化问题等。这些案例包括分类:垃圾邮件识别,排序:智能收件箱,回归模型:预测网页访问量,正则化:文本回归,最优化:密码破解,无监督学习:构建股票市场指数,空间相似度:用投票记录对美国参议员聚类,推荐系统:给用户推荐R语言包,社交网络分析:在Twitter上感兴趣的人,模型比较:给你的问题找到最佳算法。各章对原理的叙述力求概念清晰、表达准确,突出理论联系实际,富有启发性,易于理解。在探索这些案例的过程中用到的基本工具就是R统计编程语言。R语言非常适合用于机器学习的案例研究,因为它是一种用于数据分析的高水平、功能性脚本语言。 本书主要内容: ·开发一个朴素贝叶斯分类器,仅仅根据邮件的文本信息来判断这封邮件是否是垃圾邮件; ·使用线性回归来预测互联网排名前1000网站的PV; ·利用文本回归理解图书中词与词之间的关系; ·通过尝试破译一个简单的密码来学习优化技术; ·利用无监督学习构建股票市场指数,用于衡量整体市场行情的好坏; ·根据美国参议院的投票情况,从统计学的角度对美国参议员聚类; ·通过K近邻算法构建向用户推荐R语言包; ·利用Twitter数据来构建一个“你可能感兴趣的人”的推荐系统; ·模型比较:给你的问题找到最佳算法。 -
网站分析实战
《网站分析实战:如何以数据驱动决策,提升网站价值》由王彦平、吴盛峰著。目前,越来越多的网站开始重视数据,并期望从中发现新的机会,不管你是做网络营销、互联网产品设计、电子商务运营、个人站点运营维护,我们都希望从数据中寻找有价值的结论,并且指导公司管理层的决策,最终创造更大的网站价值。《网站分析实战:如何以数据驱动决策,提升网站价值》以通俗易懂的方式来讲解网站分析所需掌握的知识,剖析日常工作中遇到的问题,并且配合大量的实战案例的讲解。 -
SPSS其实很简单
《SPSS其实很简单》力图打破这种局面:从实际问题入手,剥离出需要研究的问题,帮助读者理解如何选择恰当的统计方法。软件的发展,使统计从专业方法变成大众的游戏。只要输入格式无误的数据,就能得到漂亮的结果,然而最重要的问题一一方法的选择以及结果的解读却被忽略。从使用SPSS生成变量开始,到最终实现撰写APA(美国心理协会)格式的结果,提供SPSS每一操作步骤的截图,并对输出结果进行解读,帮助读者在面对大量输出结果时,快速有效地找到所需部分,并做出合理分析。总结统计方法使用的前提假设和利用SPSS进行各种统计分析的程序步骤,带领读者理解统计方法的实质。 -
最简单的图形与最复杂的信息
[内容简介] ★在当今这个数据驱动、信息大爆炸的时代,我们需要懂得如何利用图形语言清晰、高效地表达自己。可是,我们应该如何选择反映信息的最佳图形?如何利用黑白两色令图形“多彩”?如何让“相貌平平”的图表升级为“才华出众”的图表?如何建立自己的视觉思维,以找到最有力的方式在最短的时间内打动决策者? ★在本书中,黄慧敏将数据分析和图形制作巧妙地结合在一起,清晰、有效地告诉我们如何将纷繁复杂的图形和陈述报告变得既简单又有表现力,实操性很强,且易于理解。 [编辑推荐] ★这是《华尔街日报》与作者第一次公开这种专业秘诀,出版后破天荒打进美国亚马逊金融投资类第一名、《纽约时报》商业类排行榜第九名。 ★作者是数据可视化权威爱德华•塔夫特(Edward Tufte)的学生,拥有耶鲁大学美术硕士学位,处理财金图表经验逾20年。 ★麦肯锡公司形象化沟通主管、纽约联邦储备银行执行副总裁、穆迪经济学家网创始人兼首席经济学家、牛津大学赛德商学院长、《华尔街日报》前总编辑等,对于黄慧敏非凡的资料解释能力、视觉呈现能力,都赞不绝口。 ★湛庐文化出品。