-
行为统计学基础
对统计学的学习来说,最主要的是掌握统计思想,理解相关的统计原理,能够根据实际情境提出解决问题的一个或几个合适方案,并懂得选择其中的最优。因此适合非统计专业学生的统计学理想教材,应该是能兼顾专业特点、深入浅出阐述统计学基本原理和方法,同时在轻快风趣的讲述中激发读者的学习兴趣,培养统计思维,并辅之例题分析,对使用中容易发生的错误加以提醒,切实提高学生应用统计方法分析解决实际问题的能力。《行为统计学基础》(第9版)正是这样一本非常出色的教材。本书写作风格轻松活泼,语言流畅易懂,数学深入浅出,读者在学习和阅读时不会感到枯燥乏味。 本书是心理和教育统计学方面的一本优秀的基础教材,对于在社会科学领域中的广大研究人员来说,也是一本不可多得的重要参考书 -
爱上统计学
在经过不断地摸索以及少量成功大量失败的尝试之后,我已经学会了以某种方式教授统计学,我和我的许多学生认为这种方式不会让人感到害怕,同时能够传递大量的信息。 通过这本书可以了解基础统计学的范围并学习所有应该掌握的信息,也可以了解整理和分析数据的基本思路和最常用的技术。本书理论部分有一些,但是很少,数学证明或特定数学程式的合理性讨论也很少。 为什么《爱上统计学》这本书不增加更多理论内容?很简单,初学者不需要。这并不是我认为理论不重要,而是在学习的这个阶段,我想提供的是我认为通过一定程度的努力可以理解和掌握的资料,同时又不会让你感到害怕而放弃将来选修更多的课程。我和其他老师都希望你能成功。 因此,如果你想详细了解方差分析中F值的含义,可以从Sage出版社查找其他的好书(我愿意向你推荐书目)。但是如果你想了解统计学为什么以及如何为你所用,这本书很合适。这本书能帮助你理解在专业文章中看到的资料,解释许多统计分析结果的意义,并且能教你运用基本的统计过程。 --- 第I部分 耶!我喜欢统计学 1 统计学还是虐待学?由你决定 为什么学习统计学 统计学简史 统计学:是什么(或不是什么) 我在统计学课堂上做什么 使用这本书的十种方式(同时也在学统计学!) 关于那些符号 难度指数 第Ⅱ部分 西格玛·弗洛伊德和描述统计 2 必须完成的功课——计算和理解平均数 计算均值 需要记忆的内容 计算中位数 需要记忆的内容 计算众数 何时用什么 应用计算机并计算描述统计值 3 性别差异——理解变异性 为什么理解变异性很重要 计算极差 计算标准差 需要记忆的内容 计算方差 使用计算机计算变异性量数 4 一幅图真的相当于千言万语 为什么要用图表说明数据 好图表的十个方面(少贪新,多练习) 首先是建立频数分布 图形密度:建立直方图 扁平和细长的频数分布 其他的图表数据的绝妙方法 使用计算机图示数据 5 冰淇淋和犯罪——计算相关系数 相关系数到底是什么 需要记忆的内容 计算简单相关系数 理解相关系数的含义 决定性的努力:相关系数平方 其他重要的相关 使用计算机计算相关系数 第Ⅲ部分 抓住那些有趣又有利的机会 6 你和假设:检验你的问题 也许你想成为一个科学家 零假设 研究假设 好假设的标准是什么 7 你的曲线是正态的吗——概率和概率的重要性 为什么学习概率 正态曲线(或钟型曲线) 我们最中意的标准值:z值 使用计算机计算z值 第Ⅳ部分 显著性差异——使用推论统计 8 显著性的显著——对你我来说意味着什么 显著性的概念 显著性与意义 推论统计介绍 显著性检验介绍 9 两个群体的t检验——不同群体的均值检验 独立样本t检验介绍 计算检验统计量 特殊效果:差异是真实的吗 使用计算机进行t检验 10 两个群体的t检验——两个相关群体的均值检验 …… 第V部分 你得了解和记忆的内容 附录A 30分钟SPSS教学 附录B 数据表 附录C 数据集 -
问卷统计分析实务
本书的内容架构,在于完整介绍问卷调查法中的数据处理与其统计分析流程,统计分析技术以SPSS统计软件包的操作界面与应用为主,内容除基本统计原理的解析外,着重的是SPSS统计软件包在量化研究上的应用。内容包括问卷编码、创建文件与数据处理转换、预试问卷之项目分析及信效度检验,以及正式问卷常用的统计方法介绍,包括相关、复选题及卡方检定、平均数的差异检定、单因子多变量变异数分析、回归分析、主成分回归分析、逻辑斯回归分析、区别分析等。 本书以实务应用及使用者界面为导向,对于以SPSS统计软件包来进行量化研究的使用者而言,相信有不少帮助,综括本书的内容,有五大特色:完整的操作步骤与使用程序介绍,研究者只要依书籍步骤,即能完成数据统计分析工作;操作画面与说明以SPSS14.0中文版窗口界面为主,符合多数研究者的需求;详细的报表解析与说明,让读者真正了解各种输出统计量的意义;报表结果的统整归纳,选用的范例可作为论文写作的参考;内容丰富而多元,兼顾基本统计与高等统计。 -
社会网络分析
本书以基于Python的网络分析包NetworkX作为社会网络分析工具,但不是一本NetworkX使用手册。作者将重点放在如何从庞大的社会网络分析学术积累中,挑选最精要与最实用的知识点,以帮助读者形成关于社会网络分析的知识谱系图。全书可以分为四部分。第1章和第2章是基础知识,主要介绍社会网络分析的背景信息与图论基础知识。第3~5章主要介绍如何分析社会网络,分别从个体与群体两个层面,介绍社会网络的主要测量指标与分析方法。其中第3章重点介绍社会网络节点层面的四个核心指标: 程度中心性:哪些是明星人物?哪些是边缘者?程度中心性回答类似问题。这是最为人们理解的社会网络测量指标。以微博为例,程度中心性就是粉丝的数量,那些程度中心性高的人就是微博中的明星。 亲近中心性:亲近中心性通过点与其他点的距离来测量。那些在社交网络中经常与人互动、人际关系颇好的人,比如公司中的八卦传播者,往往亲近中心性得分较高。 居间中心性:节点的居间程度,表示一个网络中经过该点最短路径的数量。在网络中,节点的居间程度越大,那么它在节点相互之间的信息传播起到的作用也就越大。在两个社会网络之间的人,比如跨界者,往往拥有较高的居间中心性。 特征向量中心性:那些在社交网络中沉默却拥有极大权力的人物,如《教父》中的主人翁柯里昂。社会网络研究者将他们称为“灰衣主教”。特征向量中心性就是找出他们的办法。基本原理是,一个有着高特征向量中心性的行动者,与他建立连接的很多行动者往往也被其他很多行动者所连接。在社交网络中,有这样一种人,很多明星与其做朋友,即使他沉默不语,也可能是一位重要的人物。 社会网络分析不仅仅在节点层面测量。第4章、第5章介绍如何分析群体。其中,第4章主要介绍社群划分的基础知识:如何将庞大的社会网络划分为小的组块?如何利用社会网络中的结构洞牟利?如何进行三元组普查与分析?例如,如何通过岛屿方法逐步找出推特上埃及革命的成千上万条转发的核心人物?又如,如何评估埃及革命中一个人的信息传播能力?显然,如果你的朋友们相互信任,将比那种一个明星发言,粉丝们单纯收听的星形网络传播能力更强。第5章主要介绍二模网络与多模网络的基础知识。关系还会存在于不同类型的主体之间,比如公司雇佣员工、投资者购买公司股票、人们占有信息与资源等。这些关系称为二模关系。现实生活中的关系往往是二模或多模。比如在微博上,可以通过你的兴趣、地域、使用的标签来为你推荐新的朋友,或者基于你对一些公共事件的看法,将你划分到特定政治群体中,这些都是基于二模或多模网络的分析得出的。 第6章是全书最精彩的部分,关注信息如何传播,初步展示分析动态社会网络发展的建模技巧。一条微博如何从一两个人关注突然成为流行用语?作者在实验中发现,当网络密度接近7%的时候,将从线性增长(每次增加一条连接)转化为病毒式扩散,也就是说,如果转发一条微博、加入一个网络社群等的人数比例达到7%,其他人将会在关键阶段马上跟进。这是一个推动脸谱走出哈佛大学的神奇数字。脸谱一步一步地跃迁,总是遵循一个规则——在一个社群里到达饱和点之后才移入一个更大的社群。作者通过手写Python算法,为读者打开动态社会网络与网络仿真的大门——我们如何用算法来模拟人类社会各类关系的变迁?有了自己亲手实践算法的经验,读者未来使用netlogo等网络仿真软件,将更加得心应手。 对于初学者来说,第4~6章这三章有一定难度,需要同时理解社会科学与编程技巧两方面知识。第7章则简单明了,主要介绍获取网络数据的入门知识。如果希望深入了解,可以阅读作者推荐的相关资源。附录A介绍收集社会网络分析所需数据的传统方法、伦理准则与相关API。附录B介绍如何安装本书涉及的相关软件,如NetworkX、matplotlib等。 总而言之,作为一本技术非常新颖的入门读物,本书通俗易懂,基于Python进行分析使得其灵活性变得更高。可以说,本书令学习者从一开始就具有上手实践的能力,除介绍网络数据获取技巧、网络抽样方法、网络在个体与群体两个层面的基本属性之外,还涉及目前日益热门的网络模拟方法,融合基础理论与算法于一身。简约却不简单,上升空间非常大!无论你是对社会网络感兴趣的大众读者,还是社会网络的专业研究者、开发者,相信本书都会在社会网络的理论与实践两方面给予启发! -
行为科学统计学入门
本书为入门的统计学教科书,主要介绍了描述统计和推论统计,特别适合那些缺乏高等数学知识的初学者。作者在保证科学性的前提下,对基础而重要的统计学概念给予了简明易懂的界定,并配有贴切的简化事例;所有计算公式均有详细具体的演示程序和操作步骤;每章结尾均针对学习者在学习过程中可能出现的问题予以难点提示,并进行简要总结。贯穿始终的典型融合更易于读者了解全书结构,建构统计学知识体系。能让初学者读懂、会用,这是本书的宗旨,也是其特色。 -
SPSS统计分析基础教程
《SPSS统计分析基础教程》内容简介:SPSS是最为优秀的统计软件之一,深受各行业用户的青睐。为满足广大读者学习统计学入门知识和统计软件入门操作的需求,《SPSS统计分析基础教程》改变了以往SPSS书籍对统计理论和软件操作“两条主线、各自表述”的编写方式,将两者完全融合起来。全书共分15章,以SPSS 12.0为准,针对统计初学者和SPSS初级用户的需求。以统计理论为主线,详细介绍了在SPSS中的界面操作、数据管理、统计图表制作、统计描述和常用单因素统计分析方法的原理与实际操作。其内容覆盖了目前国内大部分专业本科统计课程的教学范围,并结合SPSS的强大功能做了很好的扩展。各章后均附有参考文献和思考练习题,涉及统计理论的章节还提供了本章小结。全书内容深入浅出,风格简洁明快,是一本难得的统计理论与SPSS操作相结合的教材。 《SPSS统计分析基础教程》可用作各专业本科生和研究生的统计学教材,也可作为SPSS 10~12版的通用入门教材,可供各行业中非统计专业背景的人员以及希望从头学习SPSS软件的人员使用。