-
模式识别
本书全面阐述了模式识别的基础理论、最新方法以及各种应用。模式识别是信息科学和人工智能的重要组成部分,主要应用领域有图像分析、光学字符识别、信道均衡、语言识别和音频分类等。本书在完美地结合当前的理论与实践的基础上,讨论了贝叶斯分类、贝叶斯网络、线性和非线性分类器设计、上下文相关分类、特征生成、特征选取技术、学习理论的基本概念以及聚类概念与算法。与前一版相比,增加了大数据集和高维数据相关的最新算法,这些算法适用于Web挖掘和生物信息等应用;提供了最新的分类器和鲁棒回归的核方法;分类器组合技术,包括Boosting方法。新增一些热点问题,如非线性降维、非负矩阵因数分解、关联性反馈、鲁棒回归、半监督学习、谱聚类和聚类组合技术。每章均提供有习题与练习,用MATLAB求解问题,给出一些例题的多种求解方法;且支持网站上提供有习题解答,以便于读者增加实际经验。 本书可作为高等院校自动化、计算机、电子和通信等专业研究生和高年级本科生的教材,也可作为计算机信息处理、自动控制等相关领域的工程技术人员的参考用书。 -
Pattern Classification
The first edition, published in 1973, has become a classic reference in the field. Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department. -
神经网络与机器学习
《神经网络与机器学习(英文版第3版)》的可读性非常强,作者举重若轻地对神经网络的基本模型和主要学习理论进行了深入探讨和分析,通过大量的试验报告、例题和习题来帮助读者更好地学习神经网络。神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响最为广泛的是SimonHaykin的《神经网络原理》(第4版更名为《神经网络与机器学习》)。在《神经网络与机器学习(英文版第3版)》中,作者结合近年来神经网络和机器学习的最新进展,从理论和实际应用出发,全面。系统地介绍了神经网络的基本模型、方法和技术,并将神经网络和机器学习有机地结合在一起。《神经网络与机器学习(英文版第3版)》不但注重对数学分析方法和理论的探讨,而且也非常关注神经网络在模式识别、信号处理以及控制系统等实际工程问题中的应用。 本版在前一版的基础上进行了广泛修订,提供了神经网络和机器学习这两个越来越重要的学科的最新分析。 -
模式识别中的核方法及其应用
《模式识别中的核方法及其应用》内容简介:特征抽取步骤是模式识别系统的核心和关键步骤之一,该步骤直接影响到系统性能的优劣。作为模式识别特征抽取领域的一次技术革命,核方法具有将线性不可分离数据变换为线性可分离数据的优越性能,从而为获得高分类正确率提供保障。核方法在模式识别、机器学习、计算机视觉、工业自动化与图像处理等领域的应用方兴未艾。 作为国内首部专门研究核方法的专著,《模式识别中的核方法及其应用》力图绕开晦涩的理论分析,从应用的角度对核方法及其优化进行形象而直观的阐述,并结合人脸识别、性别分类、字符识别等应用实例以及机器学习领域的基准数据集进行介绍。《模式识别中的核方法及其应用》在核方法的基础上,较为详细地总结了作者近几年的研究成果。全书共10章,主要内容包括:核方法简介,核方法目标函数与核方法改进,特征抽取结果的逼近与核方法改造,训练集的分析与核方法改造,联合不同核方法的特征抽取方案,基于特征相关分析的核方法以及核函数参数选择问题,各核方法间理论联系的分析,以及基于核的非线性特征抽取框架。 《模式识别中的核方法及其应用》既可作为计算机科学与技术、信息技术、自动化、电子工程等专业的科研用书和补充教材,还适合从事模式识别、生物特征识别、机器学习、计算机视觉、工业自动化、图像处理等研究的技术人员参考使用。 -
模式分析的核方法
本书详细介绍基于核的模式分析的基本概念及其应用,主要内容包括:主要理论基础,若干基于核的算法,从最简单的到较复杂的系统,例如核偏序最小二乘法、典型相关分析、支持向量机、主成分分析等。还描述了若干核函数,从基本的例子到高等递归核函数,从生成模型导出的核函数(如HMM)到基于动态规划的串匹配核函数,以及用于处理文本文档的特殊核函数等。 本书适用于所有从事模式识别、机器学习、神经网络及其应甩的学生、教师和研究人员。 -
Markov Random Field Modeling in Image Analysis (Advances in Pattern Recognition)