-
拓扑实验
《拓朴实验》由上海教育出版社出版。 -
拓扑学
《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,最近由原作者进行了全面更新。第一部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)最大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。 -
基础拓扑学
这是一本拓扑学的入门书籍。本书的特点是:1.注重培养学生的几何直观能力;2.对于单纯同调的处理重点比较突出,使主要线索不至于被复杂的细节所掩盖;3.注意使抽象理论与具体应用保持平衡。 全书内容包括:引言,连续性,紧致性和连通性,粘合空间,基本群,单纯剖分,曲面,单纯同调,映射度与Leschetz数,纽结与复迭空间。 读者对象为大学数学系学生、研究生,以及需要拓扑学知识的科技人员、教师等。 -
基础拓扑学
“这是一本不可多得的优秀教材,内容精心选择,阐述出色,图示丰富……对于作者来说,拓扑学首先是一门几何学……” ——数学公报(MATHEMATICAL GAZETTE) 本书是一部拓扑学入门书籍,主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。内容涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,包含139个图示和350个难度各异的思考题,有助于培养学生的几何直观能力,加强对书中内容的理解。本书注重抽象理论与具体应用相结合,要求读者具有实分析、初等群论和线性代数的知识。作者在选材和阐述上都着意体现数学的美,注重培养读者的直觉,经常从历史的观点介绍拓扑学。 本书是许多国外知名高校的拓扑学指定教材,在我国也被许多大学采用。 -
Lecture Notes on Elementary Topology and Geometry
-
Differential Topology