-
Introduction to Functional Differential Equations
The present book builds upon the earlier work of J. Hale, "Theory of Functional Differential Equations" published in 1977. The authors have attempted to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a completely new presentation of linear systems (Chapter 6-9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global attractors was thoroughly revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (Chapters 1,2,3,9,10). Chapter 12 is also entirely new and contains a guide to active topics of research. In the sections on supplementary remarks, the authors have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. -
Elliptic Partial Differential Equations of Second Order
-
Partial Differential Equations
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs, the wave, heat and Lapace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics. -
数学物理方程
《数学物理方程(第2版)》是作者在1979年第一版的基础上,根据多年来的教学实践修订而成的。《数学物理方程(第2版)》大体保持了第一版中取材的范围、结构和深度。同时,在修订中更加突出了三类典型的二阶线性偏微分方程的基本内容;在讲解基本理论与求解方法的同时注意突出处理问题的思想方法;为开阔读者的视野,也适当介绍了偏微分方程的广义解与数值解,但比第一版精简了篇幅。全书共7章,其中1~3章为三类典型方程;4~7章分别为二阶线性偏微分方程的分类和总结、一阶双曲型偏微分方程组、广义解与广义函数解、偏微分方程的数值方法。 《数学物理方程(第2版)》可作为数学专业和应用数学专业本科的教材。 -
偏微分方程讲义
《偏微分方程讲义(第3版)》是俄罗斯科学院院士О.А.奥列尼克多年来在莫斯科大学数学力学系为大学三年级学生讲授该课程基础上的扩充。内容包括偏微分方程理论的古典与现代理论的基础部分,以及泛函分析、广义函数理论、函数空间理论方面的一些知识。作者是И.Г.彼得罗夫斯基的学生,在偏微分方程这个方向享有盛名。此书反映了莫斯科大学在这个课程上,20世纪后半叶至今的新情况,可供我国偏微分方程课教学参考。 -
Partial Differential Equations (Graduate Studies in Mathematics, V. 19) GSM/19