-
集合论基础
集合论是数学的一个基本分支,在数学中占据着独特的地位,其基本概念已渗透到数学的所有领域。本书从集合论中最基本的概念开始,循序渐进,深入浅出。主要内容有:公理及运算、关系与函数、自然数、实数的构造、基数与选择公理、秩序与序数、序数与序型等。本书附有大约300道习题。 本书可作为数学、计算机及其他相关专业本科生教材。 -
Elements of Set Theory
This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning. -
数理逻辑
本书是数理逻辑方面的经典教材。书中涵盖了命题逻辑、一阶逻辑、不可判定性以及二阶逻辑等方面的内容,并且包含本书是数理逻辑方面的经典教材。书中涵盖了命题逻辑、一阶逻辑、不可判定性以及二阶逻辑等方面的内容,并且包含了与计算机科学有关的主题,如有限模型。本书特点是:内容可读性强;组织结构更灵活,授课教师可根据教学需要节选本书的内容;反映了近几年来理论计算机科学对逻辑学产生的影响;包含较多的示例和说明。本书适合作为计算机及相关专业本科生和研究生数理逻辑课程的教材。. 本书是数理逻辑方面的经典教材,以可读性强而著称,在美国大学中采用率极高,麻省理工学院、加州大学伯克利分校、哥伦比亚大学、康奈尔大学等众多名校均用它作为教材。本版章节组织更加灵活,增加了与计算机科学相关的主题(比如有限模型),还增加了一些示例和阐释文字,更适合本科生和研究生数理逻辑课程使用。. -
数学的语言
是什么让一架巨型喷汽式飞机悬浮在空中? 是什么让美式足球比赛出现在电视荧幕上? 数学让那些看不见的变得可见。 数学是一种模式的科学,是我们看待世界,包括外在的物理、生物与社会世界,和内在心智世界的一种方式。数学的美,隐藏在数字、点、线与面、几何图形、函数等符号中。 从古典数学(代数)到现代语言分析,从几何学、微积分到拓扑学、统计学及物理学,本书将从各学科层面,提示如何用数学去看见自然里不可见的结构;同时,从数学的发迹讲起,直至今日发展,提供一个清楚而贯通的网络。 -
代数
本书是一本代数学的经典著作,既介绍了矩阵运算、群、向量空间、线性变换、对称等较为基本的内容,又介绍了环、模、域、伽罗瓦理论等较为高深的内容,对于提高数学理解能力、增强对代数的兴趣是非常有益处的。 本书是一本有深度、有特点的著作,适合数学工作者以及基础数学、应用数学等专业的学生阅读。 本书由著名代数学家与代数几何学家Michael Artin所著,是作者在代数领域数十年的智慧和经验的结晶。书中既介绍了矩阵运算,群,向量空间,线性变换,对称等较为基本的内容,又介绍了环、模、域、伽罗瓦理论等较为高深的内容,本书对于提高数学理解能力、增强对代数的兴趣是非常有益处的。此外,本书的可阅读性强,书中的习题也很有针对性,能让读者很快地掌握分析和思考的方法。 本书在麻省理工学院、普林斯顿大学、哥伦比亚大学等著名学府得到了广泛采用,是代数学的经典教材之一。 目录 译者序 前言 给教师的话 致谢 第一章 矩阵运算 第一节 基本运算 第二节 行约简 第三节 行列式 第四节 置换矩阵 第五节 克拉默法则 练习 第二章 群 第一节 群的定义 第二节 子群 第三节 同构 第四节 同态 第五节 等价关系和划分 第六节 陪集 第七节 限制到子群的同态 第八节 群的积 第九节 模算术 第十节 商群 练习 第三章 向量空间 第一节 实向量空间 第二节 抽象域 第三节 基和维数 第四节 用基计算 第五节 无限维空间 第六节 直和 练习 第四章 线性变换 第一节 维数公式 第二节 线性变换的矩阵 第三节 线性算子和特征向量 第四节 特征多项式 第五节 正交矩阵与旋转 第六节 对角化 第七节 微分方程组 第八节 矩阵指数 练习 第五章 对称 第一节 平面图形的对称 第二节 平面运动群 第三节 有限运动群 第四节 离散运动群 第五节 抽象对称:群作用 第六节 对陪集的作用 第七节 计数公式 第八节 置换表示 第九节 旋转群的有限子群 练习 第六章 群论的进一步讨论 第一节 群在自身的作用 第二节 二十面体群的类方程 第三节 在子集上的作用 第四节 西罗定理 第五节 阶群 第六节 对称群计算 第七节 自由群 第八节 生成元与关系 第九节 托德—考克斯特算法 练习 第七章 双线性型 第一节 双线性型的定义 第二节 对称型:正交性 第三节 正定型相关的几何 第四节 埃尔米特型 第五节 谱定理 第六节 圆锥曲线与二次曲面 第七节 正规算子的谱定理 第八节 斜对称型 第九节 用矩阵记号对结果的小结 练习 第八章 线性群 第九章 群表示 第十章 环 第十一章 因子分解 第十二章 模 第十三章 域 第十四章 伽罗瓦理论 附录 背景材料 记号 进一步阅读建议 索引 -
高等代数
从《高等代数(第3版)》的前身《高等代数讲义》(1964年由高等教育出版社出版)算起,它已问世近40年了。国内广大读者从它得益,也对它肯定。《高等代数(第3版)》又是从我们的师长段学复教授、聂灵沼教授、丁石孙教授继承下来的,我们感到它有着历史的纪念意义。因此在修订时力求保持它原来的框架和原来的风格。 这次修订有如下几点: (1)文字上的推敲,特别是一些名词,如“映上”、“1-1”等均用现代流行的“满射”、“单射”来替代。 (2)删去广义逆及代数基本概念两部分内容。我们发现两者都不必作为基础课内容。特别是后者,现在数学专业专科也要开设抽象代数或近世代数课程,它就更不必要在基础课中占据课时了。 (3)增加了矩阵的有理标准形,辛空间两节和附录二“整数的可除性理论”。 增添了若尔当标准形的存在性的一个“几何”证明。 (4)用(*)注出了一些选学内容。根据学时和需要,教师可自行决定选择其中哪些内容。