-
数字图像处理
本书共12章,即绪论、数字图像基础、灰度变换与空间滤波、频率域滤波、图像复原与重建、彩色图像处理、小波和多分辨率处理等。 -
数字图像处理
《数字图像处理(第3版)(英文版)》是数字图像处理经典著作,作者在对32个国家的134个院校和研究所的教师、学生及自学者进行广泛调查的基础上编写了第三版。除保留了第二版的大部分主要内容外,还根据收集的建议从13个方面进行了修订,新增400多幅图像、200多个图表和80多道习题,同时融入了近年来本科学领域的重要发展,使《数字图像处理(第3版)(英文版)》具有相当的特色与先进性。全书分为12章,包括绪论、数字图像基础、灰度变换与空间滤波、频域滤波、图像复原与重建、彩色图像处理、小波及多分辨率处理、图像压缩、形态学图像处理、图像分割、表现与描述、目标识别。 -
Python计算机视觉编程
《python计算机视觉编程》是计算机视觉编程的权威实践指南,依赖python语言讲解了基础理论与算法,并通过大量示例细致分析了对象识别、基于内容的图像搜索、光学字符识别、光流法、跟踪、三维重建、立体成像、增强现实、姿态估计、全景创建、图像分割、降噪、图像分组等技术。另外,书中附带的练习还能让读者巩固并学会应用编程知识。 《python计算机视觉编程》适合的读者是:有一定编程与数学基础,想要了解计算机视觉的基本理论与算法的学生,以及计算机科学、信号处理、物理学、应用数学和统计学、神经生理学、认知科学等领域的研究人员和从业者。 -
图像处理的偏微分方程方法
《图像处理的偏微分方程方法》系统地讨论了偏微分方程在图像处理中的应用,内容包括图像滤波、复原、分割、放大、图像增强、彩色增强等。全书突出了理论与实践紧密结合的特点,并在所附光盘中提供了若干典型数值方案的实验性MATLAB程序和可供实验用的图像素材。 -
数字图像处理(第二版)
本书是数字图像处理领域的一本新著,是1977年问世的《数字图像处理(第一版)》的重要修订与扩充。较上一版,啬了关于小波变换、图像形态学和彩色图像处理的章节,并新增了500多幅图像、200多幅图表。该书是近20年来此领域最权威的教材之一。全书共分12章,首先介绍了数字图像基础、空间域和频域的图像增强;然后讨论了图像复原、彩色图像处理、小波变换及多分辨率处理和图像压缩;最后讲述了形态学图像处理、图像分割、表示与描述和对象识别等。本书侧重于对数字图像处理基本概念和方法的介绍,并为本领域的进一步学习和研究奠定了坚实的基础。全书概念清楚、深入浅出、图文并茂,并且反映了近10年来数字图像处理领域的最新发展情况。 本书主要适用于信号与信息处理、计算机科学与技术、自动化、电子科学与技术、通信工程、地球物理、生物工程、物理、化学、医学、遥感等领域的大学教师、科技工作者、研究生、大学本科高年级学生以及工程技术人员。 -
计算机视觉
《计算机视觉——算法与应用》探索了用于分析和解释图像的各种常用技术,描述了具有一定挑战性的视觉应用方面的成功实例,兼顾专业的医学成像和图像编辑与交织之类有趣的大众应用,以便学生能够将其应用于自己的照片和视频,从中获得成就感和乐趣。本书从科学的角度介绍基本的视觉问题,将成像过程的物理模型公式化,然后在此基础上生成对场景的逼真描述。作者还运用统计模型来分析和运用严格的工程方法来解决这些问题。 本书作为本科生和研究生“计算机视觉”课程的理想教材,适合计算机和电子工程专业学生使用,重点介绍现实中行之有效的基本技术,通过大量应用和练习来鼓励学生大胆创新。此外,本书的精心设计和编排,使其可以作为计算机视觉领域中一本独特的基础技术参考和最新研究成果文献。