-
The R Book
The high-level language of R is recognized as one of the most powerful and flexible statistical software environments, and is rapidly becoming the standard setting for quantitative analysis, statistics and graphics. R provides free access to unrivalled coverage and cutting-edge applications, enabling the user to apply numerous statistical methods ranging from simple regression to time series or multivariate analysis. Building on the success of the author’s bestselling Statistics: An Introduction using R, The R Book is packed with worked examples, providing an all inclusive guide to R, ideal for novice and more accomplished users alike. The book assumes no background in statistics or computing and introduces the advantages of the R environment, detailing its applications in a wide range of disciplines. * Provides the first comprehensive reference manual for the R language, including practical guidance and full coverage of the graphics facilities. * Introduces all the statistical models covered by R, beginning with simple classical tests such as chi-square and t-test. * Proceeds to examine more advance methods, from regression and analysis of variance, through to generalized linear models, generalized mixed models, time series, spatial statistics, multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates and professionals in science, engineering and medicine. It is also ideal for students and professionals in statistics, economics, geography and the social sciences. -
Applied Predictive Modeling
This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. -
R语言统计入门(第2版)
这《R语言统计入门(第2版)》以最恰当的方式向初学者介绍了R的全貌,内容涵盖基本的R语言编程方法、基本数据处理和一些高级数据操作的技巧,有助于读者理解R向量化编程的特点。此外,作者在本书中还详细描述了包含回归分析、假设检验、广义线性模型、非线性拟合等常用统计方法的原理。虽然本书以实际案例解析居多,但是并非不重视理论,作者恰当而到位地描述了理论方面的内容,既不晦涩,也非浅白,而是向读者打开了一扇窗。作者希望这本书可以作为一道“开胃菜”引导更多的人投入到对统计和R的研究之中。 -
R Cookbook
With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you're a beginner, R Cookbook will help get you started. If you're an experienced data programmer, it will jog your memory and expand your horizons. You'll get the job done faster and learn more about R in the process. * Create vectors, handle variables, and perform other basic functions * Input and output data * Tackle data structures such as matrices, lists, factors, and data frames * Work with probability, probability distributions, and random variables * Calculate statistics and confidence intervals, and perform statistical tests * Create a variety of graphic displays * Build statistical models with linear regressions and analysis of variance (ANOVA) * Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language-one practical example at a time." -Jeffrey Ryan, software consultant and R package author -
An Introduction to R
This manual provides an introduction to "R", a software package for statistical computing and graphics. R is free software, distributed under the GNU General Public License. It can be used with GNU/Linux, Unix and Microsoft Windows. -
机器学习
这本书为机器学习技术提供了一些非常棒的案例研究。它并不想成为一本关于机器学习的工具书或者理论书籍,它注重的是一个学习的过程,因而对于任何有一些编程背景和定量思维的人来说,它都是不错的选择。 ——Max Shron OkCupid 机器学习是计算机科学和人工智能中非常重要的一个研究领域,近年来,机器学习不但在计算机科学的众多领域中大显身手,而且成为一些交叉学科的重要支撑技术。本书比较全面系统地介绍了机器学习的方法和技术,不仅详细阐述了许多经典的学习方法,还讨论了一些有生命力的新理论、新方法。 全书案例既有分类问题,也有回归问题;既包含监督学习,也涵盖无监督学习。本书讨论的案例从分类讲到回归,然后讨论了聚类、降维、最优化问题等。这些案例包括分类:垃圾邮件识别,排序:智能收件箱,回归模型:预测网页访问量,正则化:文本回归,最优化:密码破解,无监督学习:构建股票市场指数,空间相似度:用投票记录对美国参议员聚类,推荐系统:给用户推荐R语言包,社交网络分析:在Twitter上感兴趣的人,模型比较:给你的问题找到最佳算法。各章对原理的叙述力求概念清晰、表达准确,突出理论联系实际,富有启发性,易于理解。在探索这些案例的过程中用到的基本工具就是R统计编程语言。R语言非常适合用于机器学习的案例研究,因为它是一种用于数据分析的高水平、功能性脚本语言。 本书主要内容: ·开发一个朴素贝叶斯分类器,仅仅根据邮件的文本信息来判断这封邮件是否是垃圾邮件; ·使用线性回归来预测互联网排名前1000网站的PV; ·利用文本回归理解图书中词与词之间的关系; ·通过尝试破译一个简单的密码来学习优化技术; ·利用无监督学习构建股票市场指数,用于衡量整体市场行情的好坏; ·根据美国参议院的投票情况,从统计学的角度对美国参议员聚类; ·通过K近邻算法构建向用户推荐R语言包; ·利用Twitter数据来构建一个“你可能感兴趣的人”的推荐系统; ·模型比较:给你的问题找到最佳算法。