-
The Concepts and Practice of Mathematical Finance
An ideal introduction for those starting out as practitioners of mathematical finance, this book provides a clear understanding of the intuition behind derivatives pricing, how models are implemented, and how they are used and adapted in practice. Strengths and weaknesses of different models, e.g. Black-Scholes, stochastic volatility, jump-diffusion and variance gamma, are examined. Both the theory and the implementation of the industry-standard LIBOR market model are considered in detail. Each pricing problem is approached using multiple techniques including the well-known PDE and martingale approaches. This second edition contains many more worked examples and over 200 exercises with detailed solutions. Extensive appendices provide a guide to jargon, a recap of the elements of probability theory, and a collection of computer projects. The author brings to this book a blend of practical experience and rigorous mathematical background and supplies here the working knowledge needed to become a good quantitative analyst. -
金融数学技术
《金融数学技术:不完全市场中的工具》主要介绍涉及资产定价、投资组合、风险度量三大领域的实用数学工具。在《金融数学技术:不完全市场中的工具》中,读者可以看到理论与实际应用的紧密结合,理论支撑实际应用,实际应用反过来又印证了理论的正确性,每章节后面的习题将有助于读者加深对这些数学工具应用的理解。现代金融学大量地利用数学的知识,其中概率论、线性代数、微积分、偏微分方程、随机积分、计算数学等的运用尤为广泛。这些知识的运用增加了学习金融学的难度。《金融数学技术》一书介绍了金融学中不确定的现金流(比如证券衍生品)定价时会用到的数学工具。本书主要提供给具有一定数学基础的金融学硕士使用。在伦敦帝国大学,本书已经作为金融学博士课程的教材。 -
期权定价的数学模型和方法
《期权定价的数学模型和方法》从偏微分方程的观点和方法,对Black-Scholes-Merton的期权定价理论作了系统深入的阐述,一方面,从多个角度、多个层面阐明期权定价理论的基本思路:基于市场无套利假设,通过△-对冲原理,把人们引入一个风险中性世界,从而对期权给出一个独立于每个投资人偏好的"公平价格";另一方面,充分利用偏微分方程理论和方法对期权理论作深入的定性和定量分析,其中特别对美式期权,与路径有关期权以及隐含波动率等重要问题,展开了深入的讨论,另外,《期权定价的数学模型和方法》对所涉及的现代数学内容,都有专节介绍,尽可能作到内容是自封的。期权是风险管理的核心工具,对期权定价理论作出杰出贡献的Scholes和Merton曾因此荣获1997年诺贝尔经济学奖。 -
An Introduction to the Mathematics of Financial Derivatives, Second Edition
This popular text, publishing Spring 1999 in its Second Edition, introduces the mathematics underlying the pricing of derivatives. The increase of interest in dynamic pricing models stems from their applicability to practical situations: with the freeing of exchange, interest rates, and capital controls, the market for derivative products has matured and pricing models have become more accurate. Professor Neftci's book answers the need for a resource targeting professionals, Ph.D. students, and advanced MBA students who are specifically interested in these financial products. The Second Edition is designed to make the book the main text in first year masters and Ph.D. programs for certain courses, and will continue to be an important manual for market professionals. -
Interest Rate Models - Theory and Practice
-
金融衍生工具中的数学
《金融衍生工具中的数学(第2版)》以现代资产定价理论所需的基本数学工具进行了系统全面的介绍,主要内容包括套利定理、风险中性概率、维纳过程、泊松过程、Ito微积分、鞅、偏微分方程、Girsanov定理、Feynman-Kac公式等。该书的一个特色,用简单、清晰的方式将相关数学知识与金融应用很好地结合起来,既为读者弥补了相应数学知识,又能让读者明白这些数学知识在资产定价中是如何应用的。 总的来说,与第一版相比,这一版本的内容几乎增加了一倍。前15章以对印刷和其它错误进行了修订,并新增了几节内容。《金融衍生工具中的数学(第2版)》的新颖之处体现在第二部分的7章内容之中。这几章使用的方法与第一部分类似,涉及固定收益产品和利率产品中的数学工具。最后一章是停时和美式衍生工具的简略介绍。