-
Music Recommendation and Discovery
With so much more music available these days, traditional ways of finding music have diminished. Today radio shows are often programmed by large corporations that create playlists drawn from a limited pool of tracks. Similarly, record stores have been replaced by big-box retailers that have ever-shrinking music departments. Instead of relying on DJs, record-store clerks or their friends for music recommendations, listeners are turning to machines to guide them to new music. In this book, Òscar Celma guides us through the world of automatic music recommendation. He describes how music recommenders work, explores some of the limitations seen in current recommenders, offers techniques for evaluating the effectiveness of music recommendations and demonstrates how to build effective recommenders by offering two real-world recommender examples. He emphasizes the user's perceived quality, rather than the system's predictive accuracy when providing recommendations, thus allowing users to discover new music by exploiting the long tail of popularity and promoting novel and relevant material ("non-obvious recommendations"). In order to reach out into the long tail, he needs to weave techniques from complex network analysis and music information retrieval. Aimed at final-year-undergraduate and graduate students working on recommender systems or music information retrieval, this book presents the state of the art of all the different techniques used to recommend items, focusing on the music domain as the underlying application. -
Mahout实战
通过收集数据来学习和演进的计算机系统威力无穷。Mahout作为Apache的开源机器学习项目,把推荐系统、分类和聚类等领域的核心算法浓缩到了可扩展的现成的库中。使用Mahout,你可以立即在自己的项目中应用亚马逊、Netflix及其他互联网公司所采用的机器学习技术。 本书出自Mahout核心成员之手,得到Apache官方推荐,权威性毋庸置疑。作者凭借多年实战经验,为读者展现了丰富的应用案例,并细致地介绍了Mahout的解决之道。本书还重点讨论了可扩展性问题,介绍了如何利用Apache Hadoop框架应对大数据的挑战。 本书内容: • 利用分组数据实现个性化推荐; • 寻找数据中的逻辑簇; • 通过即时分类实现过滤与调优。 -
推荐系统
编辑推荐: 通过对本书的学习,读者不仅可以全面系统地了解该领域的基础原理,还能试验如何搭建一套真正的推荐系统。 —— 百度主任架构师、百度技术委员会主席 廖若雪 本书比较全面地介绍了推荐系统涉及的相关知识点,很适合对于推荐系统感兴趣的相关人员作为入门教程,目前能够系统全面介绍相关技术的中文书籍还显得匮乏,相信这本译著对于缓解这种情况大有裨益。 ——新浪微博数据挖掘技术专家 张俊林 本书不但介绍了比较成熟的经典算法,还介绍了最近几年的一些新进展,并辅之以实际应用的案例介绍。希望看到越来越多的朋友加入到推荐引擎的研究和应用中来! ——百分点信息科技有限公司首席运营官兼技术副总裁 张韶峰 由蒋凡执笔翻译的这本《推荐系统》是一本从基础介绍推荐引擎的难得的好书,给人启迪良多。愿越来越多的互联网爱好者认真阅读本书,走在互联网发展大潮的前沿,成为下一代互联网产品真正需要的人才。 ——人民搜索商务搜索部总监 常兴龙 读者评价: 这是迄今为止市面上所有讲推荐系统的书中最全面、最实用的一本入门指南。如果你是教这门课的大学老师,万万不能错过这本“推荐系统大全”。尤其值得称道的是,这本书广泛涵盖了不同类型的推荐系统,并对它们逐一进行了鞭辟入里、细致入微的剖析。虽然这本书定位于初中级读者,但是我认为即使是经验丰富的专业人员,也会在其中发现新鲜有趣的内容。 ——Robin Burke, 芝加哥德保罗大学教授 本书涵盖了推荐系统领域的全部知识,并为应对未来新的挑战提供了前瞻性建议。书中全面解释了一系列生成推荐的经典算法和方法,概述了源自社交计算和语义网的新手段对推荐系统的作用。希望这本书能够点燃你的激情,释放你的创造力和进取精神,把推荐系统的研究与应用推向新的高度。 ——Joseph A. Konstan, 美国明尼苏达大学教授 内容简介: 本书全面阐述了开发最先进推荐系统的方法,其中呈现了许多经典算法,并讨论了如何衡量推荐系统的有效性。书中内容分为基本概念和最新进展两部分:前者涉及协同推荐、基于内容的推荐、基于知识的推荐、混合推荐方法,推荐系统的解释、评估推荐系统和实例分析;后者包括针对推荐系统的攻击、在线消费决策、推荐系统和下一代互联网以及普适环境中的推荐。此外,本书还包含大量的图、表和示例,有助于读者理解和把握相关知识。 本书适用于从事搜索引擎、推荐算法、数据挖掘等研发工作的专业人员以及对推荐系统感兴趣的读者。 -
推荐系统实践
内容简介: 随着信息技术和互联网的发展,人们逐渐从信息匮乏的时代走入了信息过载(information overload)的时代 。在这个时代,无论是信息消费者还是信息生产者都遇到了很大的挑战:对于信息消费者,从大量信息中找到自己感兴趣的信息是一件非常困难的事情;对于信息生产者,让自己生产的信息脱颖而出,受到广大用户的关注,也是一件非常困难的事情。推荐系统就是解决这一矛盾的重要工具。推荐系统的任务就是联系用户和信息,一方面帮助用户发现对自己有价值的信息,另一方面让信息能够展现在对它感兴趣的用户面前,从而实现信息消费者和信息生产者的双赢。 -
个性化
自从人类进入信息化时代以后,每一种新技术形态的出现都会催生新的商业模式并促使传统的商业模式发生变革,个性化是信息时代以来对传统商业模式最具颠覆性的一种技术形态!商业的未来将由个性化技术来驱动,历史的车轮将带领我们进入商业智能高度发达的个性化时代。在个性化时代,每一个企业都将为你(消费者)提供专属性的产品和服务,世界将以你为中心。 本书开个性化时代先河,详尽且极具前瞻性地探讨了个性化技术将如何颠覆与重塑电子商务、团购、定价与促销、线下超市、新闻、广告、搜索引擎、移动互联网、社交网络、微博、求职招聘、约会婚恋、电影和音乐等各个领域现有的商业模式,将带领无数企业翻开商业时代的新篇章。本书的三位作者都是个性化技术与商业模式领域的先驱和专家,他们在本书中的观点和见解极富洞察力和启发意义,将为你在新的商业时代抢占新的制高点提供绝佳的指导。