结构方程模型

王济川//王小倩//姜宝法

文学

SEM 统计

2011-5

高等教育

目录
1.1 模型表述 1.1.1 测量模型 1.1.2 结构模型 1.1.3 模型表达方程 1.2 模型识别 1.3 模型估计 1.4 模型评估 1.5 模型修正 附录 1.1 将总体方差/协方差表达为模型参数的函数 附录 1.2 结构方程模型的最大似然函数 第二章 验证性因子分析模型 2.1 验证性因子分析模型基础知识 2.2 连续观察标识的验证性因子分析模型 2.3 非正态与删截连续观察标识的验证性因子分析模型 2.3.1 非正态性检验 2.3.2 非正态数据的验证性因子分析模型 2.3.3 删截标识的验证性生因子分析模型 2.4 分类观察标识的验证性因子分析模型 2.5 高阶验证性因子分析模型 附录 2.1 BSI-18 量表 附录 2.2 条目可靠度 附录 2.3 Cronbacha系数 附录 2.4 分类结局测量的连接函数和概率计算 第三章 结构方程模型 3.1 MIMIC模型 3.2 结构方程模型 3.3 单标识变量中测量误差的校正 3.4 检验涉及潜变量的交互作用 附录3.1 测量误差的影响 第四章 潜发展模型 4.1 线性潜发展模型 4.2 非线性潜发展模型 4.3 多结局测量发展过程的线性潜发展模型 4.4 两部式潜发展模型 4.5 分类结局测量的潜发展模型 第五章多组模型 5.1 多组验证性因子分析模型 5.1.1 多组一阶验证性因子分析模型 5.1.2 多组二阶验证性因子分析模型 5.2 多组结构方程模型 5.3 多组潜发展模型 第六章结构方程建模的样本量估计 6.1 结构方程模型样本量估计的经验法则 6.2 satorra-Saris法估计样本量 6.2.1 应用satorra-Saris法估计CFA模型的样本量 6.2.2 应用satorra-Saris法估计LGM模型的样本量 6.3 蒙特卡罗模拟法估计样本量 6.3.1 蒙特卡罗模拟法估计CFA模型的样本量 6.3.2 蒙特卡罗模拟法估计LGM模型的样本量 6.3.3 蒙特卡罗模拟法估计具有协变量的LGM模型样本量 6.3.4 蒙特卡罗模拟法估计具有协变量和缺失值的LGM模型样本量 6.4 基于模型拟合统计量/指标的SEM样本量估计
【展开】
内容简介
《结构方程模型:方法与应用》以通俗易懂的方式系统地阐述结构方程模型的基本概念和统计原理,侧重各种结构方程模型的实际运用。《结构方程模型:方法与应用》采用国际著名SEM软件Mplus,使用真实数据来演示各种常见的以及某些新近发展起来的较高级的结构方程模型,提供相应的Mplus程序,并详细解读程序输出结果。参照《结构方程模型:方法与应用》提供的例题和相应的计算机程序,读者便能自己实践各种SEM模型。《结构方程模型:方法与应用》可作为大学社会科学及公共卫生学院研究生以及统计和生物统计专业本科生教材,也可作为相关学科的研究人员从事统计分析的工具书。
【展开】
下载说明

1、追日是作者栎年创作的原创作品,下载链接均为网友上传的的网盘链接!

2、相识电子书提供优质免费的txt、pdf等下载链接,所有电子书均为完整版!

下载链接