-
Introduction to Topology
This volume explains nontrivial applications of metric space topology to analysis, clearly establishing their relationship. Also, topics from elementary algebraic topology focus on concrete results with minimal algebraic formalism. Two chapters consider metric space and point-set topology; the other 2 chapters discuss algebraic topological material. Includes exercises, selected answers, and 51 illustrations. 1983 edition. -
复分析
《复分析》从现代数学的观点介绍复分析的基本知识与常用工具,全书共分为8章,主要包括:复数、复函数、作为映射的解析函数、复积分、级数与乘积展开、共形映射,软件克雷问题、椭圆函数以及全局解析函数,此外,大部分章节后都有练习,便于学生掌握书中内容。 -
孙维刚高中数学
《孙维刚高中数学》是著名的数学教育家孙维刚老师的著作,涵盖了现行高中数学教育大纲中所要求掌握的内容,是孙老师三轮实验班的教材。《孙维刚高中数学》立足于对高中数学中基础知识的分析把握,以及对方法和思想’的指导,在详述概念后,引申概念外围的规律、方法,以及解题思考规律。书中提出,学好数学必须站在系统的角度看问题,力求一题多解、多解归一(结论一个)、多题归一(善于总结),善于用“动”的观点思考问题(做到“风物长宜放眼量”),这对开启学生的数学智慧,掌握科学的学习方法、思维规律,提高学习效率有很大的帮助。 -
Algebraic Topology
-
运筹学
运筹学(概率模型应用范例与解法第4版),ISBN:9787302133193,作者:(美)温斯顿 -
代数拓扑
本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。 本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。第一章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。最后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。 本书为全英文版。