-
非交换几何
《非交换几何》主要内容:his book is the English version of the French “Geometrie non commutative” published by InterEditions Paris (1990). After the excellent initial translation by S.K. Berberian, a considerable amount of rewriting was done and many additions made, multiplying by 3.8 the size of the original manuscript. In particular the present text contains several unpublished results. -
简明微积分发展史
简明微积分发展史,ISBN:9787535544810,作者:龚升、林立军 -
An Introduction to the Langlands Program
This book presents a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Each of the twelve chapters focuses on a particular topic devoted to special cases of the program. The book is suitable for graduate students and researchers. -
随机分析及应用
《随机分析及应用(英文版)(第2版)》介绍了随机分析的理论和应用两方面的知识。内容涉及积分和概率论的基础知识、基本的随机过程,布朗运动和伊藤过程的积分、随机微分方程、半鞅积分、纯离散过程,以及随机分析在金融、生物、工程和物理等方面的应用。书中有大量的例题和习题,并附有答案,便于读者进行深层次的学习。 《随机分析及应用(英文版)(第2版)》非常适合初学者阅读,可作为高等院校经管、理工和社科类各专业高年级本科生和研究生随机分析和金融数学的教材,也可供相关领域的科研人员参考。 -
An Introduction to Manifolds
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, "Introduction to Manifolds" is also an excellent foundation for Springer's GTM 82, "Differential Forms in Algebraic Topology". -
Probability Essentials
This introduction to Probability Theory can be used, at the beginning graduate level, for a one-semester course on Probability Theory or for self-direction without benefit of a formal course; the measure theory needed is developed in the text. It will also be useful for students and teachers in related areas such as Finance Theory (Economics), Electrical Engineering, and Operations Research. The text covers the essentials in a directed and lean way with 28 short chapters. Assuming of readers only an undergraduate background in mathematics, it brings them from a starting knowledge of the subject to a knowledge of the basics of Martingale Theory. After learning Probability Theory from this text, the interested student will be ready to continue with the study of more advanced topics, such as Brownian Motion and Ito Calculus, or Statistical Inference. The second edition contains some additions to the text and to the references and some parts are completely rewritten.