-
商业数据挖掘导论
本书综合商业专业知识和数据挖掘模型开发于一体,系统地介绍了数据挖掘商业环境、数据挖掘技术及其在商业中的应用。在注重对数据挖掘技术讲解的同时,强调了数据挖掘在商业决策领域中的应用,弥补了大多数数据仓库技术类书籍商业应用不足的缺点。本书主线清晰,案例丰富,语言精练。 本书既可以作为商业专业本科生、研究生的教材,也可以在MBA、EMBA 教学和企业培训中使用。 -
Introduction to Data Mining
Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. The text requires only a modest background in mathematics. Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms. Quotes This book provides a comprehensive coverage of important data mining techniques. Numerous examples are provided to lucidly illustrate the key concepts. -Sanjay Ranka, University of Florida In my opinion this is currently the best data mining text book on the market. I like the comprehensive coverage which spans all major data mining techniques including classification, clustering, and pattern mining (association rules). -Mohammed Zaki, Rensselaer Polytechnic Institute -
数据挖掘技术
本书是数据挖掘领域的经典著作,数年来畅销不衰。全书从技术和应用两个方面,全面、系统地介绍了数据挖掘的商业环境、数据挖掘技术及其在商业环境中的应用。自从1997年本书第1版出版以来,数据挖掘界发生了巨大的变化,其中的大部分核心算法仍然保持不变,但是算法嵌入的软件、应用算法的数据库以及用于解决的商业问题都有所演进。第2版展示如何利用基本的数据挖掘方法和技术,解决常见的商业问题。 本书涵盖核心的数据挖掘技术,包括:决策树、神经网络、协同过滤、关联规则、链接分析、聚类和生存分析等。此外,还提供了数据挖掘最佳实践、数据挖掘的最新进展和一些富有挑战性的研究课题,极具技术深度与广度。配套网站www.data-miners.com/companion提供了每章的练习和用于测试各种数据挖掘技术的数据。全书语句凝炼、清新,对复杂概念的实际应用进行了生动解释,是必不可少的数据挖掘教材。 -
Data Mining
As with any burgeoning technology that enjoys commercial attention, the use of data mining is surrounded by a great deal of hype. Exaggerated reports tell of secrets that can be uncovered by setting algorithms loose on oceans of data. But there is no magic in machine learning, no hidden power, no alchemy. Instead there is an identifiable body of practical techniques that can extract useful information from raw data. This book describes these techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same, it has been updated to reflect the changes that have taken place over five years, and now has nearly double the references. The highlights for the new edition include thirty new technique sections; an enhanced Weka machine learning workbench, which now features an interactive interface; comprehensive information on neural networks; a new section on Bayesian networks; plus much more; algorithmic methods at the heart of successful data mining-including tried and true techniques as well as leading edge methods; performance improvement techniques that work by transforming the input or output; and, downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization-in a new, interactive interface. -
社会计算
在刚过去的十年我们见证了共享Web和社会媒体的诞生,它们用各种富有创意的方式将人们联系在一起。目前,成千上万的用户忙着在线玩、加标签、工作以及开展社交活动,合作、通信和智能正采取着前所未有的新形式。社会媒体的出现促进了商业模式的改变,影响了人们观点和情感的沟通,为大规模地研究人际交互和集体行为提供了无数机会。 本书从数据挖掘角度介绍社会媒体的性质,评述社会媒体计算的代表性成果,并描述社会媒体带来的挑战。书中介绍了基本概念,使用浅显易懂的例子展示最新的和有效的评价方法。特别是讨论了基于图的社区发现技术并对处理社会媒体中动态的、混杂的网络进行了重要延伸。另外还展示了发现的社区模式怎样用于社会媒体挖掘。本书中的概念、算法和方法能够帮助人们更好地利用社会媒体,并为建立社会化智能系统提供支持。本书是研究社会媒体中社区发现与挖掘技术的入门级读物,适合以数据为中心的社会媒体学科的学生、研究者和实践者阅读。 本书网站http://dmml.asu.edu/cdm/提供了讲课幻灯片、书中所有的图、主要的参考文献、书中使用的一些小型数据集,以及一些代表性算法的源代码。 -
深入浅出数据分析
《深入浅出数据分析》以类似“章回小说”的活泼形式,生动地向读者展现优秀的数据分析人员应知应会的技术:数据分析基本步骤、实验方法、最优化方法、假设检验方法、贝叶斯统计方法、主观概率法、启发法、直方图法、回归法、误差处理、相关数据库、数据整理技巧;正文之后,意犹未尽地以三篇附录介绍数据分析十大要务、R工具及ToolPak工具,在充分展现目标知识以外,为读者搭建了走向深入研究的桥梁。 本书构思跌宕起伏,行文妙趣横生,无论读者是职场老手,还是业界新人;无论是字斟句酌,还是信手翻阅,都能跟着文字在职场中走上几回,体味数据分析领域的乐趣与挑战。