-
Statistical Inference
This book builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and are natural extensions and consequences of previous concepts. Intended for first-year graduate students, this book can be used for students majoring in statistics who have a solid mathematics background. It can also be used in a way that stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures for a variety of situations, and less concerned with formal optimality investigations. -
金融时间序列分析
本书全面阐述了金融时间序列,并主要介绍了金融时间序列理论和方法的当前研究热点和一些最新研究成果,尤其是风险值计算、高频数据分析、随机波动率建模和马尔科夫链蒙特卡罗方法等方面。此外,本书还系统阐述了金融计量经济模型及其在金融时间序列数据和建模中的应用,所有模型和方法的运用均采用实际金融数据,并给出了所用计算机软件的命令。较之第1版,本版主要在新的发展和实证分析方面进行了更新,新增了状态空间模型和Kalman滤波以及S-Plus命令等内容。 本书可作为时间序列分析的教材,也适用于商学、经济学、数学和统计学专业对金融的计量经济学感兴趣的高年级本科生和研究生,同时,也可作为商业、金融、保险等领域专业人士的参考书。 -
概率与计算
《概率与计算》详细地介绍了概率技术以及在概率算法与分析发展中使用过的范例。《概率与计算》分两部分,第一部分介绍了随机抽样、期望、马尔可夫不等式、切比雪夫不等式、切尔诺夫界、球和箱子模型、概率技术和马尔可夫链等核心内容。第二部分主要研究连续概率、有限独立性的应用、熵、马尔可夫链蒙特卡罗方法、耦合、鞅和平衡配置等比较高深的课题。《概率与计算》适合作为高等院校计算机科学和应用数学专业高年级本科生与低年级研究生的教材,也适合作为数学工作者和科技人员的参考书。 -
概率、随机变量与随机过程
《概率、随机变量与随机过程》是美国著名学者A·帕普里斯教授所著的一本经典教材。自1965年第1版问世以来至今已第4版,一直被美国多所大学用作相关专业的研究生教材。它的特点是将高深的理论恰当地应用于工程实际,因而深受工程界专业人士的青睐。本书(第4版)在保持前三版风格和精华的基础上作了大量的修订:更新了约三分之一的章节内容,包括几个新的专题和新增的第15、16章,增加了大量的新例子,进一步澄清了一些复杂的概念,使读者能更容易地理解它们。 本书可供无线电通信系统、信号处理、控制理论、优化、滤波等专业的研究生和本科高年级学生使用,也可供相关领域的科开人员和工程技术人员参考。 -
统计思维
代码跑出来的概率统计问题; 程序员的概率统计开心辞典; 开放数据集,全代码攻略。 现实工作中,人们常被要求用数据说话。可是,数据自己是不能说话的,只有对它进行可靠分析和深入挖掘才能找到有价值的信息。概率统计是数据分析的通用语言,是大数据时代预测未来的根基。 站在时代浪尖上的程序员只有具备统计思维才能掌握数据分析的必杀技。本书正是一本概率统计方面的入门图书,但视角极为独特,折射出大数据浪潮的别样风景。作者将基本的概率统计知识融入Python编程,告诉你如何借助编写程序,用计算而非数学的方式实现统计分析。一个趣味实例贯穿全书,生动地讲解了数据分析的全过程:从采集数据和生成统计量,到识别模式和检验假设。一册在手,让你轻松掌握分布、概率论、可视化以及其他工具和概念。 编写测试代码深入理解概率论和统计学 运行实验检验统计行为特征,如生成服从各种分布的样本 通过模拟理解数学上艰涩的概念 学习贝叶斯估计等实用内容 用Python导入各种来源的数据 运用统计推断解决真实数据问题 《统计思维:程序员数学之概率统计》是一本以全新视角讲解概率统计的入门图书。抛开经典的数学分析,Downey 手把手教你用编程理解统计学。概率、分布、假设检验、贝叶斯估计、相关性等,每个主题都充满趣味性,经编程解释后变得更为清晰易懂。 本书研究数据主要来源于美国全国家庭成长调查(NSFG)与行为风险因素监测系统(BRFSS),数据源及解决方案的相关代码全部开放,具体章节列出了大量学习和进阶资料,方便读者参考。 Allen B. Downey是富兰克林欧林工程学院的计算机科学副教授,曾执教于韦尔斯利学院、科尔比学院和加州大学伯克利分校。他先后获麻省理工学院计算机科学硕士学位和加州大学伯克利分校计算机科学博士学位。Downey已出版十余本技术书,内容涉及Java、Python、C++、概率统计等,深受专业读者喜爱。他的最新Think系列书还有Think Complexity: Complexity Science and Computational Modeling、Think Python。 -
概率论基础教程
《概率论基础教程》(第7版)内容简介——概率论是研究自然界和人类社会中随机现象数量规律的数学分支。本书通过大量的例子讲述了概率论的基础知识, 主要内容有组合分析、概率论公理化、条件概率和独立性、离散和连续型随机变量、随机变量的联合分布、期望的性质、极限定理等。本书附有大量的练习, 分为习题、理论习题和自检习题三大类, 其中自检习题部分还给出全部解答。