-
数论概论
本书面向非数学专业学生,讲述了有关数论的知识,教给他们如何用数学方法思考问题,同时介绍了目前数论研究的某些前沿课题。本书采用轻松的写作风格,引领读者进入美妙的数论世界,不断激发读者的好奇心,并通过一些精心设计的练习来培养读者的探索精神与创新能力。对于定理的证明,则强调证明方法而不仅仅是得到特定的结果。 与第3版相比,本版的具体更新如下: 新增一章,详细介绍数学归纳法(第26章)。 前言部分给出了各章之间依赖关系的流程图,便于读者选择阅读。 调整了内容的组织结构,将反证法的相关材料前移至第8章,原根的相关章节移至二次互反律与平方和之后,上一版第47~50章的内容移至网上。 给出了二次互反律的完整证明,以及雅可比符号二次互反律的部分证明。 更新了书中的实例及章后练习题。 -
数论与密码学教程
《数论与密码学教程(第2版)(英文版)》是一部讲述数论的密码学应用的研究生教材。该书是《数论与密码学教程》的第2版,它是在第一版的基础上修订而成的。书中增加了零知识的证明和不经意传输,平方筛因子分解方法,椭圆曲线在素性检验中的应用,概率加密术,hash 函数等一些新内容。全书共分6个章节,具体内容包括基础数论浅述,有限域和二次剩余,密码学,公共密钥,素性和因式分解和椭圆曲线密码学。 -
费马大定理
《国外数学名著系列79:费马大定理(代数数论的原始导引)(影印版)》介绍了著名的费马大定理的发展,从费马大定理起至Kummer的理论结束,以此介绍代数数论。而一些更基础的理论,如Euler证明x+y=z的不可能性,则以更简单的方式阐述。一些新的理论和工具则通过具体问题加以介绍。这本专著还详细介绍了Kummer理论在二次积分的应用及其与Gauss理论的联系,这部分理论在其他专著中都未曾有过介绍。 This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development,beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book。 -
Rational Points on Elliptic Curves (Undergraduate Texts in Mathematics)
The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book's accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry. -
解析数论导论
《解析数论导论》前五章讲述可约性、收敛和算术函数等基本概念。紧下来的章节讲述序列中素数的狄利克莱定理、高斯和、二次剩余、狄利克莱级数和欧拉积及其在黎曼zeta函数和狄利克莱函数中的应用,并且引进了划分的概念。书中每章末都收集了大量练习。前十章,除去第一章,任何具备基本微积分知识的人都可以读懂;最后四章需要对复函数理论(包括复积分和留数积分)一定的了解。 -
数论入门
《数论入门》的一大特点是注重计算和例子。这与目前计算机当道有关,历史上的数论猜想都始于计算。从若干特例中归纳出一个漂亮的结论,有些被证明了,有些则成为折磨数学家的“青春之梦”。 这本书是一部习题集,靠着作者巧妙的安排将读者一步步领入数论的大门,靠习题来学习一门数学早有成功经验。如波利亚和舍贵的《数学分析中的问题和定理》。习题的选择,难易的梯度,次序的安排成为高手和庸人的分水岭。学习数论要做题,而且要做大量的题,随着做题数量的增加慢慢会在大脑中产生质的变化,也就是豁然开朗。