-
简明数论
《简明数论》是初等数论入门教材。全书共分三十六节,内容包括:整除、不定方程、同余、指数与原根、连分数、数论函数等。每节配备适量习题,书末附有提示与解答。《简明数论》积累了作者数十年的教学经验,它是在作者编写的《初等数论》(北京大学出版社,1992)基础上,经过几年的教学实践,认真听取各方面意见,将精选的内容加以重新组织并作必要的修改、补充而成。使其内容更成熟,结构更合理,具有选择面宽,适用范围广等特点。 《简明数论》选材精练,推理严谨,重点突出,例题丰富,习题难易适度,对重点内容从不同侧面和不同角度进行论述,使读者能在较短时间内窥见数论的一些真髓。 读者对象为综合性大学、中、高等师范学校数学系、计算机系及其相关专业师生、教师进修学院师生、数学爱好者、中学数学教师、高中学生。 -
数论讲义
《数论讲义(上册)(第2版)》是根据作者多年教学经验和科研成果写成的,内容除通常的初等数论教材中所包括的基本内容外,还包括三次、四次互反律,代数数论初步,有限域上某些不定方程的基础知识,第二版中还增加了素性判别和整数分解等内容,作者在介绍熟知的经典结果时,也注意介绍新的证明方法和近代进展,并尽可能介绍它们的应用,《数论讲义(上册)(第2版)》第二版仍分上、下两册出版,上册前五章可作为初等数论课教学内容,上册第六章及下册可作为选修课教学内容,《数论讲义(上册)(第2版)》可供数学专业、计算机专业及信息安全、数字信号处理、组合数学方面的学生和研究生用作教材或参考书,也可供从事上述这些方面的教学、科研人员参考。 -
数论概论
我喜欢这本书。它讲解清晰,易于理解。用数值进行试验,用自己的方式从观察结果中猜测,最后完成证明。 ——Jurgen Bierbrauer, 密歇根理工大学 本书每一章非常简短而且自成体系,很容易从中挑选我喜爱的主题。本书写作风格独特,书中提供了极佳的示例,以引出定理的叙述和证明。这种风格非常适合于数论的初级课程。 ——Maureen Fenrick, 明尼苏达州立大学曼凯托分校 本书面向非数学专业学生,讲述了有关数论的知识,教给他们如何用数学方法思考问题,同时介绍了目前数学研究的前沿课题。本书采用轻松的写作风格,并包括大量数值示例。对于定理的证明,则强调证明方法而不仅仅是得到特定的结果。 -
初等数论
《初等数论》主要内容为整除,不定方程,同余,同余式,平方剩余,连分数,数论函数与质数分布等。主要增加了关于20世纪后期费马大定理的获证以及应用数论建立公开密钥体制的介绍,指出整数的初等性质与抽象代数之间的联系。 -
数论导引
本书是一本经典的数论名著,书的内容取材于作者在牛津大学、剑桥大学等大学授课的讲义。书中从各个不同角度对数论进行了阐述,包括素数、无理数、同余、费马定理、同余式、连分数、不定式、二次域、算术函数、分划等等。第二作者为此书每章增加了必要的注解地,便于读者理解并进一步学习。 本书读者对象为大学数学专业学生以及对数论感兴趣的专业人士。 -
算术探索
《算术研究》是被誉为“数学王子”的德国大数学家高斯的第一部杰作,该书写于1797年,1801年正式出版,这是一部用拉丁文写成的巨著,是数论的最经典及最具权威性的著作。在随后的200年时间中被翻译成多国文字,如德文、英文、俄文等。这部著作在数学中的重要地位不亚于《圣经》在基督教中的地位,只有欧几里得的《几何原本》堪与之相比,因为高斯有一句名言:“数学是科学的女皇,数论是数学的女皇。”这部著作共七篇。 第一篇讨论一般的数的同余:并首次引进了同余记号,这是现代数学中无处不在的等价和分类概念出现在代数中的最早的意义重大的例子。 第二篇讨论一次同余方程:其中严格证明了算术基本定理。 第三篇讨论幂的同余式:此篇详细讨论了高次同余式。 第四篇“二次同余方程”意义非同寻常:因为其中给出了二次互反律的证明,有人统计到21世纪初,二次互反律的证明已经超过200种,其中柯西、雅可比、迪利克雷、艾森斯坦、刘维尔、库默尔、克罗内克、戴德金、瓦莱-布桑、希尔伯特、弗罗贝尼乌斯、斯蒂尔切斯、M•里斯、韦伊都给出了新证法,可见问题之重要。 第五篇是“二次型与二次不定方程”在这一篇中关于二次型的特征的研究,标志着群特征标理论的肇始,使高斯成为群论的先驱者之一。 第六篇把前面的理论应用到各种特殊情形,并引入了超越函数。 第七篇是“分圆方程”,不少人认为此篇是《算术研究》的顶峰。 《算术研究》当时对于数学家也很难读,它曾被称为“七印封严之书”(这是西方人对难解之书喜用的词,近于中国人所谓的“天书”,典出《圣经•启示录》第五章第一节:“我看见坐宝座的右手中有书卷,里外都写着书,用七印封严了”)后来迪利克雷作了详细注释。此书简洁完美的风格多少减慢了它的传播速度,而最终当富有才华的年轻人开始深入研读它时,由于出版商的破产,又买不到它了,甚至高斯最喜欢的学生艾森斯坦从未能拥有一本,有些学生不得不从头到尾抄录全书。