-
Mathematical Logic
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraisse's characterization of elementary equivalence, Lindstrom's theorem on the maximality of first-order logic, and the fundamentals of logic programming. -
Mathematics
The aim of this book is to explain, carefully but not technically, the differences between advanced, research-level mathematics, and the sort of mathematics we learn at school. The most fundamental differences are philosophical, and readers of this book will emerge with a clearer understanding of paradoxical-sounding concepts such as infinity, curved space, and imaginary numbers. The first few chapters are about general aspects of mathematical thought. These are followed by discussions of more specific topics, and the book closes with a chapter answering common sociological questions about the mathematical community (such as "Is it true that mathematicians burn out at the age of 25?") -
数学(第一卷)
《数学:它的内容,方法和意义》是前苏联著名数学家为普及数学知识撰写的一部名著。书中用极其通俗的语言介绍了现代数学各个分支的内容、历史发展及其在自然科学和工程技术中的应用。内容精练,由浅入深,只要具备高中数学知识就可阅读。全书共20章,分三卷出版,每一章介绍数学的一个分支。第一卷分数学概观、数学分析、解析几何和代数这四部分,内容包括数学的特点,算术,几何,算术和几何,初等数学时代,变量的数学,现代数学等。 -
数盲
《数盲:数学无知者眼中的迷惘世界》(趣味数学精品译丛)为什么甚至受过良好教育的人,仍然对数学了解得那么少?数盲的代价是什么?1998年约翰•艾伦•保罗士在他著名的畅销书出版时就声称:没有能力来合理地处理大量数据和概率问题,导致我们误传了政府的政策,扰乱了个人的决定,增加了对形形色色伪科学的感染。《数盲》让我们知道:我们忽视了什么?我们将从何做起?在充满刺激的关于数的概率的神秘故事的奇闻铁事中,保罗士自如地介入了现代生活的各个层面:从竞选的角逐到运动公的统计,从股票诈骗和报业心理学到节食的医药配方,性别歧视,保险,彩票和药物试验。《数盲》的读者将会领略到一串令人惊讶的事实,一系列有份量的思想,而最重要的是掌握了一个更清晰、更定量化地观察世界的方法。 -
Solving Mathematical Problems
Authored by a leading name in mathematics, this engaging and clearly presented text leads the reader through the various tactics involved in solving mathematical problems at the Mathematical Olympiad level. Covering number theory, algebra, analysis, Euclidean geometry, and analytic geometry, Solving Mathematical Problems includes numerous exercises and model solutions throughout. Assuming only a basic level of mathematics, the text is ideal for students of 14 years and above in pure mathematics. -
基础拓扑学
这是一本拓扑学的入门书籍。本书的特点是:1.注重培养学生的几何直观能力;2.对于单纯同调的处理重点比较突出,使主要线索不至于被复杂的细节所掩盖;3.注意使抽象理论与具体应用保持平衡。 全书内容包括:引言,连续性,紧致性和连通性,粘合空间,基本群,单纯剖分,曲面,单纯同调,映射度与Leschetz数,纽结与复迭空间。 读者对象为大学数学系学生、研究生,以及需要拓扑学知识的科技人员、教师等。