-
Differential Topology
-
基本拓扑学
《基本拓扑学(英文版)》主要内容:This is a topology book for undergraduates,and in writing it I have had two aims in mind.Firstly,to make sure the student sees a variety of defferent techniques and applications involving point set,geometric,and algebraic topology,without celving too deeply into any particular area.Secondly,to develop the reader's geometrical insight;topology is after all a branch of geometry. -
Topology from the Differentiable Viewpoint
This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem. -
A Mathematical Introduction to Logic
A Mathematical Introduction to Logic, Second Edition, offers increased flexibility with topic coverage, allowing for choice in how to utilize the textbook in a course. The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets. -
近世代数概论
《近世代数概论(英文版.第5版)》出自近世代数领域的两位科学巨匠之手,是一本经典的教材。全书共分为15章,内容包括:整数、多项式、实数、复数、矩阵代数、线性群、行列式和标准型、布尔代数和格、超限算术、环和理想、代数数域和伽罗华理论等。 《近世代数概论(英文版.第5版)》曾帮助过几代人理解近世代数,至今仍是一本非常有价值的参考书和教材,适合数学专业及其他理工科专业高年级本科生和研究生使用。 -
Introduction to Calculus and Analysis, Vol. 1 (Classics in Mathematics)
From the reviews: "Volume 1 covers a basic course in real analysis of one variable and Fourier series. It is well-illustrated, well-motivated and very well-provided with a multitude of unusually useful and accessible exercises. (...) There are three aspects of Courant and John in which it outshines (some) contemporaries: (i) the extensive historical references, (ii) the chapter on numerical methods, and (iii) the two chapters on physics and geometry. The exercises in Courant and John are put together purposefully, and either look numerically interesting, or are intuitively significant, or lead to applications. It is the best text known to the reviewer for anyone trying to make an analysis course less abstract. (...)" The Mathematical Gazette (75.1991.471