-
数理逻辑基础
本书介绍数理逻辑的基础部分。绪论除介绍逻辑初步概念外还讲述了有关集合论和递归论的初步知识。正文前四章的内容属一阶逻辑,其中前两章是以非形式化的方式介绍命题逻辑和谓词逻辑,后两章分别给出了一个经典命题逻辑演算系统P和一个经典谓词逻辑演算系统Q,讨论了它们的元性质,最后还给出了一个与Q等价的形式系统QS。最后一章介绍了有关一阶理论的知识,主要是模型论的基础内容及不可判定问题。各章节后一般都附有适量的习题。本书适合作为高等院校文科、理工科所开设的与现代逻辑相关课程的教材或参考书。 -
数理逻辑
本书脱胎于北京大学哲学系本科“数理逻辑”课程的讲义,针对逻辑学的初学者,尤其是初学逻辑的学生,介绍一阶逻辑的最基本的知识和技术,包括一阶语言的语形和语义、一阶推演系统、一阶逻辑的完全性定理等。 -
数理逻辑引论
本书是著名数理逻辑哲学家王宪钧教授的代表作,共分三篇,前两篇“命题演算”和“狭谓词演算”,讲述数理逻辑基础知识。作者对基本概念的讲解、定理和无定理的证明都详细易懂,第三篇是关于数理逻辑发展的简史,作者论述了从莱布尼茨到歌德尔的数理逻辑发展的三个阶段,指出了数理逻辑的五个特点,并就一些重要的数学问题发表了自己的见解。本书内容涉及数学、哲学、逻辑学、语言学以及科学史等诸多问题。适用于哲学、数理工作者。 -
逻辑与演绎科学方法论导论
《逻辑与演绎科学方法论导论》是我的《论数理逻辑和演绎方法》(该书1936年最初用波兰文出版,又于1937年出版了确切的德文译本,书名是:《数理逻辑和数学方法论导论》)一书部分修正了的和扩充了的版本。最初写《逻辑与演绎科学方法论导论》,是企图把它当作一本通俗的科学著作;其目的是向受过相当教育的普通读者提供一一用把科学的严格性和最大的可理解性结合起来的方式一一集中于现代逻辑的强大的现代思潮的一个清楚的观念。这个思潮最初是从多少受到局限的巩固数学基础的任务发生的。可是,在现阶段它却具有远?广泛的目的。因为它试图创造出可为人类知识的整体提供一种共同基础的统一的概念工具。此外,它有助于使演绎方法完全化和敏锐化,这种演绎方法在某些科学中被当作确立真理的唯一的允许的方法,而且,的确,它至少在一切智力活动的领域内,是从被公认的假设中推导出结论来的必不可少的补助的工具。 -
弗雷格哲学论著选辑
哲学 -
算术基础
弗雷格(Gottlob Friedrich Ludwig Frege,1848-1925)在《算术基础》中阐述了三条基本原理,这三条原理一方面说明他为什么要构造他的人工语言系统,另一方面说明算术何以能够建立在逻辑的基础之上,这是从哲学的高度出发论证他的逻辑和数学思想的基础。 弗雷格于1897年发表《概念文字:一种模仿算术语言构造的纯思维的形式语言》(Begriffsschrift,eine der arithmetischen nachgebildete Formelsprache des reinen Denkens)。这本薄薄的书可谓现代逻辑的开山之作。它奠定了数理逻辑中的命题逻辑和一阶谓词逻辑的基础。然而,对于这本逻辑史上划时代的专著,在当时却少有人问津。弗雷格反思其原因,认为除人们对那陌生的符号系统望而生畏外,还不理解他为什么要构造这一系统的理由。他在1884年发表了专著《算术基础》(Grundlagen der Arithmetik)。在这本书中,他没有使用数理逻辑的符号,而是哲学理论上论证他所构造的人工语言系统的基本原理,指出严格区分心理的东西和逻辑的东西、主观的东西和客观的东西的必要性;强调决不要忘记概念和客体之间的区别;对当时所流行的逻辑学和数学中的心理主义展开批判。他认为逻辑是数学的基础,数的概念可以被定义为逻辑的类的概念,而类则被看成概念的外延。可以说,《算术基础》一书是弗雷格在哲学的方面为他的数学基础研究中的逻辑主义的方案奠定基础。