-
数理哲学导论
数理哲学导论,ISBN:9787100027625,作者:(英)罗素(Bertrand Russell)著;晏成书译 -
符号逻辑讲义
这份讲义是当代逻辑入门课程的教材,内容大约是一阶逻辑的前部,可作为教科书或参考书,用于哲学、数学、计算机科学和语言学等院系的当代逻辑课程。希望了解一点当代逻辑的各科学生,也可以把它当作课外读物。 无论在国内还是国外,可用于一阶逻辑课的教材不少,导论性的教材更多;但两类教材的脱节是个老问题。国外一些教材在导论性内容后增加些一阶逻辑的内容(如完全性定理),其中有的已被国内学者介绍或模仿。但这类教材通常仍只能用于导论课。编写《符号逻辑讲义》的目的之一,就是想把脱节的教材连起来。说到西方人写的当代逻辑入门教材,不能不提一种现象:越来越多的这类教材是由逻辑界之外的人撰写的。有一次,美国哲学界的几位同事谈起部分学生逻辑水平很低,其中一人开玩笑说,那是你们逻辑学家的过错——谁让你们不写几本好的初级教科书呢?西方人写的逻辑教科书,有的很好,有的也很糟。所以,选用这类教材时要慎重,决不是西方人写的就一定好。 作为学科和知识体系,当代逻辑并没有理科当代逻辑、上科当代逻辑和文科当代逻辑之分。任何人着想掌握当代逻辑的基础知识,应该学习的决不会比其他学科的人更少。编写《符号逻辑讲义》时,在基本内容的选择上对各学科读者一视同仁,但为了使没经过理论数学的严格训练的人也能学好,在写法上力求从接近直观的东西入手,循序渐进。 -
数理逻辑
《数理逻辑(第2版)》主要内容:What is a mathematical proof? How can proofs be justified? Are there limitations to provability? To what extent can machines carry out mathematical proofs?Only in this century has there been success in obtaining substantial and satisfactory answers. The present book contains a systematic discussion of these results. The investigations are centered around first-order logic. Our first goal is' Godel's completeness theorem, which shows that the consequence relation coincides with formal provability: By means of a calculus consisting of simple formal inference rules, one can obtain all consequences of a given axiom system (and in particular, imitate all mathematical proofs) -
数理逻辑发展史:从莱布尼茨到哥德尔
第一章 导论 第一节 数理逻辑史的研究对象和分期 第二节 数理逻辑史研究中的几个方法论问题 一 数理逻辑理论的发生和发展同社会实践的辩证关系 二 观点和材料的统一 三 逻辑方法和历史方法的统一 四 严格区别哲学观点和逻辑学说 第一编 数理逻辑前史——古典形式逻辑时期 第二章 亚里士多德的三段论 第三章 斯多阿学派的命题逻辑 第四章 中世纪的形式逻辑 第二编 数理逻辑初创时期 第五章 数理逻辑产生的时代背景 第六章 莱布尼茨的数理逻辑思想 第一节 莱布尼茨的三段论系统 第二节 莱布尼茨创建数理逻辑的指导思想 一 理性演算 二 普遍语言 第三节 莱布尼茨具体构造的演算 第七章 逻辑代数 第一节 逻辑代数建立前的逻辑发展 第二节 布尔的逻辑代数 一 逻辑代数的基本原理及类的解释 二 布尔对古典形式逻辑的处理 三 逻辑函项及其运算 四 逻辑代数的命题解释和概率解释 第三节 逻辑代数的发展 一 耶芳斯和文恩 二 皮尔士 三 施罗德 四 麦柯尔 第八章 关系逻辑 第一节 德摩根的关系逻辑 一 德摩根对古典形式逻辑的改造 二 关系逻辑的创建 第二节 皮尔士对关系逻辑的发展 一 皮尔士关系逻辑的一些基本概念 二 基本运算 三 关系逻辑的主要原理 四 量词理论 第三编 数理逻辑奠基时期 第九章 逻辑演算的建立和发展 第一节 弗雷格的逻辑演算 一 逻辑演算建立的历史背景 二 逻辑演算系统 三 自然数的定义 四 涵义和所指 第二节 皮亚诺的符号体系 一 数理逻辑 二 数学基础 第三节 罗素的逻辑演算 一 命题演算和谓词演算 二 关系逻辑 三 摹状词理论 第四节 逻辑演算的发展 一 命题演算和谓词演算的不同系统 二 逻辑演算的元理论 第五节 非经典逻辑简述 第十章 从素扑集合论到公理集合论 第一节 无穷集合的怪论 第二节 康托尔的集合论 一 康托尔的指导思想——实无穷的理论 二 可数集和不可数集 三 超穷基数和超穷序数 四 连续统假设 第三节 集合论悖论的出现——第三次数学危机 一 布拉里-福蒂悖论 二 康托尔悖论 三 罗素悖论 四 关系悖论 五 与集合论悖论不同的一些语义悖论 第四节 公理集合论的建立 一 策梅罗—弗兰克尔的公理集合论 二 冯·诺意曼的公理集合论 三 贝尔纳斯对冯·诺意曼系统的改进 第十一章 逻辑主义论题和逻辑类型论 第一节 数学概念和数学定理的推导 第二节 逻辑类型论 第三节 蒯因的新系统NF 第四节 逻辑主义的历史地位 第十二章 直觉主义的数学基础和逻辑 第一节 直觉主义的数学哲学 第二节 直觉主义的数学基础 一 潜无穷论是直觉主义数学的出发点 二 在数学中不能普遍使用排中律 三 数学对象的可构造性 第三节 直觉主义逻辑 一 直觉主义的命题演算 二 直觉主义的一阶谓词演算 三 直觉主义逻辑与经典逻辑的关系 第十三章 形式公理学和证明论 第一节 从实质公理学到形式公理学 一 第一阶段——实质公理学:《几何原本》 二 第二阶段——从实质公理学向形式公理学的过渡(概括公理学):非欧几何和射影几何 三 第三阶段——形式公理学:《几何基础》 第二节 证明论的建立 一 希尔伯特的元数学——证明论纲领 二 希尔伯特纲领的历史意义和哲学意义 第四编 数理逻辑发展初期 第十四章 哥德尔的伟大贡献 第一节 哥德尔完全性定理 第二节 模型论的两条基本定理——累文汉定理和紧致性定理 第三节 哥德尔不完全性定理 一 自然数算术的形式系统 二 哥德尔不完全性定理的直观说明 三 哥德尔配数法 四 形式算术系统元数学的算术化 五 原始递归函数和原始递归谓词 六 原始递归函数在系统中的数字可表示性 七 不可判定命题的形式结构 八 不可判定命题与说谎者悖论的关系 九 哥德尔不完全性定理的证明 十 哥德尔不完全性定理的哲学意义 第四节 选择公理和广义连续假设的一致性 第十五章 哥德尔不完全性定理带来的硕果 第一节 塔尔斯基论形式语言中的真值概念 一 在普遍的日常语言中不能定义真值概念 二 类演算的形式语言和元语言 三 在类演算的元语言中“真语句”的定义 四 关于“真语句”定义问题的一般结论 五 塔尔斯基定理及其与哥德尔不完全性定理的关系 六 塔尔斯基的成果的历史意义 第二节 艾尔伯朗——哥德尔——克林的一般递归函数定义 一 阿克曼函数 二 一般递归函数 第三节 λ转换演算和丘吉论题 一 λ转换演算 二 丘吉论题 三 丘吉不可判定性定理 第四节 图灵机和可机算函数 一 图灵机的基本概念 二 可机算函数与λ可定义函数的等价性 三 图灵论题 四 一阶谓词演算的判定问题不可解 五 图灵机理论的历史意义 第五节 波斯特的符号处理系统 一 波斯特机 二 波斯特的符号处理系统 第六节 塔尔斯基证明不可判定性的一般方法 一 若干基本概念 二 一些重要定理 三 不可判定性成果的哲学意义 人名译名对照表 主要参考文献 -
面向计算机科学的数理逻辑系统建模与推理
本书对计算机科学方面的数理逻辑进行了综合介绍,涵盖命题逻辑、谓词逻辑、模态逻辑与代理、二叉判定图、模型检测和程序验证等内容。本书主要讨论有关软硬件规范和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法、L6wenheim—Skolem定理等,并介绍了Alloy语言和NuSMV工具等内容。 本书适宜作为高等院校计算机及相关专业的数理逻辑/形式化方法课程的教材,也可供相关研究人员和专业人士参考。 -
面向计算机科学的数理逻辑系统建模与推理
数理逻辑是计算机科学的基础之一,在模型与系统的规约与验证等方面有着广泛的应用。随着当今软硬件产品日趋复杂,数理逻辑已经成为越来越多设计开发人员的日常工具。 本书适合作为高等院校计算机及相关专业的数理逻辑/形式化方法课程教材,涵盖了命题逻辑,谓词逻辑、模态逻辑与 Agent、二元决策图、模型检查和程序验证等内容。与传统数理逻辑教科书相比,它的主要特色就是紧紧围绕软硬件规约和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法,紧致性理论和Lowenhenm-Skolem定理,并介绍了Alloy语言和Nusmv工具。 本书自出版以来受到广泛好评,已经被包括美国普林斯顿大学、卡内基-梅隆大学、英国剑桥大学、德国汉堡大学、加拿大多伦多大学、荷兰 Vrije大学,印度理工学院在内的多个国家几十所高校采纳为教材。