-
微分几何讲义
本书系统地论述了微分几何的基本知识。作者用前3章,以及第6章共计4章的篇幅介绍了流形、多重线性函数、向量场、外微分、李群和活动标架等基本知识和工具。基于上述基础知识,论述了微分几何的核心问题,即联络、黎曼几何、以及曲面论。第7章是当前十分活跃的研究领域——复流形。陈省身先生是此研究领域的大家,此章包含有作者独到、深刻的见解和简捷、有效的方法。第8章的Finsler几何是本书第2版新增加的一章,它是陈省身先生近年来一直倡导的研究课题,其中Chern联络具有突出的性质,它使得黎曼几何成为Finsler几何的特殊情形。最后两个附录,介绍了大范围曲线论和曲面论,以及微分几何与理论物理关系的论述,为这两个活跃的前沿领域提出了不少进一步的研究课题。 此书可作为高校数学与理论物理专业高年级本科生和研究生教材,也可供从事物理和数学等相关学科研究人员参考。如果从双语教学角度来考虑,它无疑也是理想的候选者。 -
微分几何讲义
内 容 简 介 本书系统地论述了微分几何的基本知识。全书共七章并两个附录。作者以较大的 篇幅,即前三章和第六章介绍了流形、多重线性函数、向量场、外微分、李群和活动标架 法等基本知识和工具。在具备了上述宽广而坚实的基础上,论述微分几何的核心问题, 即连络、黎曼几何以及曲面论等。第七章复流形,既是当前十分活跃的研究领域,也是 第一作者研究成果卓著的领域之一,包含有作者独到的见解和简捷的方法。最后两个 附录,介绍了极小曲面与规范场理论,为这两活跃的前沿领域提出了不少进一步研究 课题。 此书适用于高等院校数学专业和理论物理专业的高年级学生、研究生阅读,并且 可供数学工作者和物理工作者参考。 目 录 第一章 微分流形 1微分流形的定义 2切空间 3子流形 4Frobenius定理 第二章 多重线性函数 1张量积 2张量 3外代数 第三章 外微分 1张量丛 2外微分 3外微分式的积分 4Stokes公式 第四章 连络 1矢量丛上的连络 2仿射连络 3标架丛上的连络 第五章 黎曼流形 1黎曼几何的基本定理 2测地法坐标 3截面曲率 4Gauss-Bonnet定理 5完全性 第六章 李群和活动标架法 1李群 2李氏变换群 3活动标架法 4曲面论 第七章 复流形 1复流形 2矢量空间上的复结构 3近复流形 4复矢量丛上的连络 5Hermite流形和kah1er流形 附录一 欧氏空间中的曲线和曲面 1.切线回转定理 2.四顶点定理 3.平面曲线的等周不等式 4.空间曲线的全曲率 5.空间曲线的变形 6.Gauss-Bonnet公式 7.Cohn-Vossen和Minkowski的唯一性定理 8.关于极小曲面的Bernstein定理 附录二 微分几何与理论物理 参考文献 -
陈省身文集
本书为陈省身先生的作品集。其思想性、历史性都能给作者以启迪。本书内容包括:嘉兴,我的故乡、我最美好的年华是在天津度过的、联大六年、致梅贻琦校长的信、中央研究院三年等等,阅读本书可以让读者体验到作者那个时代的文化气息、了解那段过去的历史…… -
陈省身与几何学的发展
《陈省身与几何学的发展》是《数学与人文》丛书为纪念陈省身先生诞辰100周年而出版的专辑。书中第一部分选登了历史上伟大的几何学家欧几里得、高斯、黎曼和陈省身的代表作,以显示几何学两千多年来基本思想的发展;并介绍了索菲斯·李、嘉当、布拉施克等的生平和工作,陈省身在继承了这些前辈们的成就基础上,开创了整体微分几何的新时代。第二部分主要介绍陈省身的合作者,以及他们的合作成果在如何影响现代几何学乃至代数学等领域的发展。第三和第四部分主要由陈省身的朋友、同事和学生们所写:第三部分中的纪念文章,反映了陈先生扎在中国传统文化中深深的根,以及他致力于推进中国数学事业的发展,关心、帮助年轻人的伟大人格;该部分还介绍了国际数学联盟首次颁发陈省身奖章。第四部分适合数学家阅读,包括陈省身数学工作的介绍,纪念陈省身的自述文章和数学研究;最后一篇是对陈省身的数学工作和数学生涯均有较大影响的德国数学家外尔的传记。 -
九十初度说数学 名家讲演录续编
本书分五部分讲述了数学的生涯,探讨了什么是几何,同时介绍了数学和数学家以及把中国建成数学大国等内容。 -
数学与数学人
《数学与数学人》是一套国际化的科学普及丛书,我们将邀请当代一流的中外科学家谈他们的数学人生——研究经历和成功经验。活跃在研究前沿的数学家们将会用轻松的文笔,通俗地介绍数学各领域激动人心的最新进展、某些数学专题精彩曲折的发展历史以及数学在现代科学技术中的广泛应用。