-
康托的无穷的数学和哲学
《康托的无穷的数学和哲学》既不是一部传记,也不是某一思想的历史,……而是试图记录一个不平凡的智力活动的主脉,并在某种程度上作出一些心理动力学的分析,以此表明一个新理论如何产生,为什么会产生,它所面临的问题,以及最终为什么会演变成为科学理论体系的一部分。 超穷集合论的创立最终使数学家依据对于数学性质的一般观点,以及对于无穷的特殊见解分裂成为敌对的阵营。多少年里,康托的名字就意味着论战和对立。 -
无穷之旅
《无穷之旅:关于无穷大的文化史》主要内容包括:迈向无穷大的第一步、走向合法化、收敛与极限、无穷级数的魅力、几何级数、其他无穷级数、插曲:数的概念游览、无理数据发现、康托尔对无穷大的新见解、超越无穷大、一些函数及其图形等等。 -
神秘的阿列夫
《神秘的阿列夫:数学、犹太神秘主义教派以及对无穷的探寻》主要内容:19世纪末,一位杰出的数学家在一所精神病院里身心逐渐衰弱而死去。他一系列先进观点造成的最伟大的成就,是他对无穷的特性的超前理解。这就是乔治·康托(GeorgCantor)的故事:他如何得到他的理论,他的改变了世界面貌的研究成果对后代产生了怎样深远的影响。 康托充满智慧的、深奥哲学观点的研究工作,有古希腊数学和在喀巴拉——中世纪犹太神秘主义教派里的源头。康托用阿列夫aleph——希姆莱字母表中的、伴有非同寻常联想的第一个字母——这个神秘数字来表示所有正整数的集合。它不是最大的数,因为——不存在最大的数,但它是一个总能趋近的终极数:恰如数字1之前不存在最后的分数。