-
比特币
2009年,比特币诞生。比特币是一种通过密码编码,在复杂算法的大量计算下产生的电子货币。虽然是虚拟货币,比特币却引起了前所未有的全球关注热潮。 这一串凝结着加密算法与运算能力的数字不仅可以安全流通、换取实物,1比特币价值甚至曾高达8 000元人民币。有研究者认为比特币具备打破几千年来全球货币由国家垄断发行的可能性。在不经意间,比特币引起的金融新浪潮已悄然成型。 虚拟货币并不是新鲜事物,为什么只有比特币受到如此追捧?它激烈变动的价格行情更让投资者们担心:比特币的合理价格到底是多少?其价格的支撑体系又在哪里?如此剧烈的上下波动是不是预示着它的不稳定直至最终崩盘? 作为国内首批参与并研究比特币的开拓者,《比特币:一个虚幻而真实的金融世界》作者们对这些问题都有着深刻的理解。本书从介绍比特币的概念出发,全面、系统地阐述了比特币的起源、发展、技术原理、生态圈等关键问题,还大胆畅想了比特币的现实应用、未来前景。 《比特币:一个虚幻而真实的金融世界》坦然面对比特币引发的种种争议,针对政府、货币体系等问题,以开放的态度、翔实的资料与读者交流,深入探讨比特币改变全球现行货币体系,朝货币发行非国家化的方向前进的可能性,揭示了比特币对现实金融业,甚至对未来世界的影响。 《比特币:一个虚幻而真实的金融世界》讲述的是一场伟大的货币实验,及一个虚幻而真实的金融世界。如何认识与思考这一实验,有助于理解互联网时代金融世界的逻辑。 -
自然计算:DNA、量子比特和智能机器的未来
《自然计算:DNA、量子比特和智能机器的未来》介绍了16位致力于解决计算领域前沿问题的科学家,他们分别在科学、工程金融等领域从事极富挑战性的工作。《自然计算:DNA、量子比特和智能机器的未来》记录了与这些科学家的对话内容,描绘了新的计算机架构和丰富多彩的新型软件技术。书中每章自成一体,揭示了这些科学家独特的探索之路;同时,还介绍了作者写作过程中产生的一系列奇思妙想,这些思想注定会让这个世界变得更好。 《自然计算:DNA、量子比特和智能机器的未来》适合所有对未来智能机器及未来计算感兴趣的读者阅读。 -
算法谜题
算法是计算机科学领域最重要的基石之一。算法谜题,就是能够直接或间接地采用算法来加以解决的谜题。求解算法谜题是培养和锻炼算法思维能力一种最有效和最有乐趣的途径。 本书是一本经典算法谜题的合集。本书包括了一些古已有之的谜题,数学和计算机科学有一部分知识就发源于此。本书中还有一些较新的谜题,其中有一部分谜题被用作知名IT企业的面试题。全书可分为4个部分,分别是概览、谜题、提示和答案。概览介绍了算法设计的通用策略和算法分析的技术,还附带有不少的实例。谜题部分将谜题按照简单、中等难度和较难三个层级分别列出。提示部分依次给出谜题提示,帮助读者找到正确的解题方向,同时仍然为读者留下了独立求解的空间。答案部分则给出了谜题的详细解答。 本书可以为对算法感兴趣的广大读者提供系统丰富而实用的资料,能够帮助读者提升高阶算法思维能力。本书适合计算机专业的高校教师和学生,想要培养和训练算法思维和计算思维的IT专业人士,以及在准备面试的应聘者和面试官阅读参考。 -
推荐系统
编辑推荐: 通过对本书的学习,读者不仅可以全面系统地了解该领域的基础原理,还能试验如何搭建一套真正的推荐系统。 —— 百度主任架构师、百度技术委员会主席 廖若雪 本书比较全面地介绍了推荐系统涉及的相关知识点,很适合对于推荐系统感兴趣的相关人员作为入门教程,目前能够系统全面介绍相关技术的中文书籍还显得匮乏,相信这本译著对于缓解这种情况大有裨益。 ——新浪微博数据挖掘技术专家 张俊林 本书不但介绍了比较成熟的经典算法,还介绍了最近几年的一些新进展,并辅之以实际应用的案例介绍。希望看到越来越多的朋友加入到推荐引擎的研究和应用中来! ——百分点信息科技有限公司首席运营官兼技术副总裁 张韶峰 由蒋凡执笔翻译的这本《推荐系统》是一本从基础介绍推荐引擎的难得的好书,给人启迪良多。愿越来越多的互联网爱好者认真阅读本书,走在互联网发展大潮的前沿,成为下一代互联网产品真正需要的人才。 ——人民搜索商务搜索部总监 常兴龙 读者评价: 这是迄今为止市面上所有讲推荐系统的书中最全面、最实用的一本入门指南。如果你是教这门课的大学老师,万万不能错过这本“推荐系统大全”。尤其值得称道的是,这本书广泛涵盖了不同类型的推荐系统,并对它们逐一进行了鞭辟入里、细致入微的剖析。虽然这本书定位于初中级读者,但是我认为即使是经验丰富的专业人员,也会在其中发现新鲜有趣的内容。 ——Robin Burke, 芝加哥德保罗大学教授 本书涵盖了推荐系统领域的全部知识,并为应对未来新的挑战提供了前瞻性建议。书中全面解释了一系列生成推荐的经典算法和方法,概述了源自社交计算和语义网的新手段对推荐系统的作用。希望这本书能够点燃你的激情,释放你的创造力和进取精神,把推荐系统的研究与应用推向新的高度。 ——Joseph A. Konstan, 美国明尼苏达大学教授 内容简介: 本书全面阐述了开发最先进推荐系统的方法,其中呈现了许多经典算法,并讨论了如何衡量推荐系统的有效性。书中内容分为基本概念和最新进展两部分:前者涉及协同推荐、基于内容的推荐、基于知识的推荐、混合推荐方法,推荐系统的解释、评估推荐系统和实例分析;后者包括针对推荐系统的攻击、在线消费决策、推荐系统和下一代互联网以及普适环境中的推荐。此外,本书还包含大量的图、表和示例,有助于读者理解和把握相关知识。 本书适用于从事搜索引擎、推荐算法、数据挖掘等研发工作的专业人员以及对推荐系统感兴趣的读者。 -
复杂性思考
本书的灵感来源于无聊与迷恋的感觉:对常规的数据结构与算法介绍的无聊,对复杂系统的迷恋。数据结构的问题在于教师在教授这门课程的时候通常不会调动起学生的积极性;复杂性科学的问题在于学校通常不会教授这门课程。 2005年,我在欧林学院讲授了一门新课程,学生要阅读关于复杂性的主题,使用Python进行实验,并学习算法与数据结构。当我在2008年再次讲授这门课程时,我写了本书的初稿。 在2011年第3次讲授这门课程时,我准备出版该书并邀请学生们以案例研究的形式提交其工作成果并包含在书中。我在欧林学院找了9位教授成立了项目委员会,选择可供出版的报告。符合标准的案例研究被纳入到本书中。我们将在下一版吸纳来自读者的更多稿件(参见附录A)。 对教师的建议 本书可以用作Python编程与算法的大学中级课程教材。我的教学遵循如下结构: 阅读 复杂性科学涵盖了各种主题。这些主题之间相互关联,但需要花费不少时间才能搞清楚这些联系。为了帮助学生们看到全景,我会向他们介绍一些阅读列表,这些都来自于该领域最流行的研究成果。我的阅读列表以及关于如何使用它的建议在附录B中。 练习 本书提供了一系列练习;很多练习都要求学生重新实现一些开创性实验并对其进行扩展。复杂性吸引人的一个地方在于我们可以通过适当的编程技能与数学知识接触研究前沿。 讨论 书中的主题提出了关于科学哲学的问题,这需要学生们进一步阅读并进行课堂讨论。 案例研究 在我的课堂上,我们将几乎半个学期的时间都用在了案例研究上。学生们经由构思产生过程、形成团队,并在一系列实验上花费6~7周的时间,然后以4~6页可发表的报告形式来呈现其工作成果。 可以通过https://sites.google.com/site/compmodolin了解课程大纲与我的说明。 对自学者的建议 在2009~2010年,我作为Google的一名访问学者在其剑桥办公室工作。在与我共事的软件工程师中,让我印象深刻的一点是他们广博的求知欲以及增长知识与技能的动力。 我希望本书能够帮助像他们一样的人们来探索他们可能遇不到的一些主题与想法,练习Python编程技能,以及学习关于数据结构与算法的更多知识(或者看看有哪些内容不适合放在第1版中)。 本书针对自学者的一些特点有: 技术深度 -
大数据
大数据:互联网大规模数据挖掘与分布式处理,ISBN:9787115291318,作者:(美) Anand Rajaraman (美) Jeffrey David Ullman 著,王 斌 译