-
Graph-based Natural Language Processing and Information Retrieval
Graph theory and the fields of natural language processing and information retrieval are well-studied disciplines. Traditionally, these areas have been perceived as distinct, with different algorithms, different applications, and different potential end-users. However, recent research has shown that these disciplines are intimately connected, with a large variety of natural language processing and information retrieval applications finding efficient solutions within graph-theoretical frameworks. This book extensively covers the use of graph-based algorithms for natural language processing and information retrieval. It brings together topics as diverse as lexical semantics, text summarization, text mining, ontology construction, text classification, and information retrieval, which are connected by the common underlying theme of the use of graph-theoretical methods for text and information processing tasks. Readers will come away with a firm understanding of the major methods and applications in natural language processing and information retrieval that rely on graph-based representations and algorithms. -
语言与数学
如何实现语言的机器翻译?如何从海量的语言文字中抽取有用信息?如何利用自然语言进行人机对话?自然语言与计算机程序语言是否一致?如何自动合成语音……信息时代对自然语言的处理使语言学与数学紧密结合在一起。 作者从事计算语言学研究几十年,潜心探索出语言符号的七种新特性。本书详细论述了这七种特性与数学的关系,反映了当前国内外语言与数学关系研究方面的最新成果。 ------- 语言符号的随机性与统计数学 语言符号的冗余性与随机过程 语言符号的离散性与集合论 语言符号的递归性与公理化方法 语言符号的层次性与图论 语言符号的非单元性与复杂特征的运算 语言符号的模糊性与模糊数学 -
成为你想成为的人
《成为你想成为的人》力图帮助你用全新的视角审视自我,思考人生,同时为你提供一套步骤明确的实用策略: 1.改善人际和工作关系; 2.扩展你对人生发展可能性的认识; 3.变挑战为机遇; 4.不断取得观赢效果; 5.控制你的感情,掌握你的生活。 认真地学习使用这些实用技巧,你将拥有更充实、更完美的人生! -
Python自然语言处理
《Python自然语言处理(影印版)》提供了非常易学的自然语言处理入门介绍,该领域涵盖从文本和电子邮件预测过滤,到自动总结和翻译等多种语言处理技术。在《Python自然语言处理(影印版)》中,你将学会编写Python程序处理大量非结构化文本。你还将通过使用综合语言数据结构访问含有丰富注释的数据集,理解用于分析书面通信内容和结构的主要算法。 《Python自然语言处理》准备了充足的示例和练习,可以帮助你: 从非结构化文本中抽取信息,甚至猜测主题或识别“命名实体”; 分析文本语言结构,包括解析和语义分析; 访问流行的语言学数据库,包括WordNet和树库(treebank); 从多种语言学和人工智能领域中提取的整合技巧。 《Python自然语言处理(影印版)》将帮助你学习运用Python编程语言和自然语言工具包(NLTK)获得实用的自然语言处理技能。如果对于开发Web应用、分析多语言新闻源或记录濒危语言感兴趣——即便只是想从程序员视角观察人类语言如何运作,你将发现《Python自然语言处理》是一本令人着迷且极为有用的好书。 -
统计自然语言处理
内容简介 本书全面介绍了统计自然语言处理的基本概念、理论方法和最新研究进展,内容包括形式语言与自动机及其在自然语言处理中的应用、语言模型、隐马尔可夫模型、语料库技术、汉语自动分词与词性标注、句法分析、词义消歧、统计机器翻译、语音翻译、文本分类、信息检索与问答系统、自动文摘和信息抽取、口语信息处理与人机对话系统等,既有对基础知识和理论模型的介绍,也有对相关问题的研究背景、实现方法和技术现状的详细阐述。 本书可作为高等院校计算机、信息技术等相关专业的高年级本科生或研究生的教材或参考书,也可供从事自然语言处理、数据挖掘和人工智能等研究的相关人员参考。 ------- 目录 第1章 绪论 1.1 基本概念 1.1.1 语言学与语音学 1.1.2 自然语言处理 1.1.3 关于“理解”的标准 1.2 自然语言处理研究的内容和面临的困难 1.2.1 自然语言处理研究的内容 1.2.2 自然语言处理涉及的几个层次 1.2.3 自然语言处理面临的困难 1.3 自然语言处理的基本方法及其发展 1.3.1 自然语言处理的基本方法 1.3.2 自然语言处理的发展 1.4 自然语言处理的研究现状 第2章 预备知识 2.1 概率论基本概念 2.1.1 概率 2.1.2 最大似然估计 2.1.3 条件概率 2.1.4 贝叶斯法则 2.1.5 随机变量 2.1.6 二项式分布 2.1.7 联合概率分布和条件概率分布 2.1.8 贝叶斯决策理论 2.1.9 期望和方差 2.2 信息论基本概念 2.2.1 熵 2.2.2 联合熵和条件熵192.2.3 互信息 2.2.4 相对熵 2.2.5 交叉熵 2.2.6 困惑度 2.2.7 噪声信道模型 2.3 支持向量机 2.3.1 线性分类 2.3.2 线性不可分 2.3.3 构造核函数 第3章 形式语言与自动机 第4章 语料库与词汇知识库 第5章 语言模型 第6章 隐马尔可夫模型 第7章 汉语自动分词与词性标注 第8章 句法分析 第9章 语义消歧 第10章 统计机器翻译 第11章 语音翻译 第12章 文本分类 第13章 信息检索与问答系统 第14章 自动文摘与信息抽取 第15章 口语信息处理与人机对话系统 附录 项目作业 名词术语索引 参考文献 -
双赢轨迹
★NLP:十五种预设 ★我不是一个数字 ★给狗取一个新名字 ★烦恼吗?那是一种心理状态