-
数学分析讲义(第一卷)
本书始于实数的基本理论.接着进入一元微积分学,包括极限、连续、级数、微分、复数、积分等,重视它对现代数学的启迪,适时介绍些抽象概念(如对基的极限),以益于拓展到一般分析学回其次探讨拓扑空间(特别是度量空间、欧氏空间 Rn)的映射,展开多元微积分学,其中涉及隐函数定理、集合上的积分、流形(特别是 Rn 中的曲面)及微分形式、流形(特别是曲线与曲面)上微分形式的积分、向量分析与场论继而研究线性赋范空间中的微分学、函数项级数与函数族的基本分析运算、含参变量的积分(特别是函数的卷积与广义函数等)、傅里叶变换、渐近展开等。
-
简明数学分析
《简明数学分析(第2版)》第一版是教育部“高等师范教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪课程教材。第二版是普通高等教育“十一五”国家级规划教材。修订按照第一版提出的“用先进的内容替代落后的内容,把教材写得内容深厚而又精炼简明”的原则,立足于现代数学的基本理论,致力于简明地建立完整的分析基础、统一的极限观点,突出多元函数理论,利用勒贝格积分建立简洁而完整的积分理论,同时对曲面上的积分给出深入的讨论,而又不牵扯多重线性代数。同时,《简明数学分析(第2版)》对传统内容也给予了应有的重视。 《简明数学分析(第2版)》共十二章,包括数学分析概要,集合论初步,实数理论,数列极限,函数极限通论,连续函数,一元微分学,不定积分和黎曼积分,多元函数和多元微分学,积分学,级数论,曲线和曲面上的积分。 《简明数学分析(第2版)》可作为高等师范院校和综合性大学数学类本科专业的数学分析课程教材,也可供青年教师参考。 -
数学分析的思想与方法
本书是作者在认真学习国内外数学科学方法论的基础上,结合自己多年的数学教学和科学研究的实践,经过长时间探讨的辛勤劳动的成果。其显著特点是系统性、深刻性与思辨性,它的内容翔实丰富,结构清新独特,笔调简洁流畅,叙述通俗易懂有启发性,将数学分析的本质、内容、思想、方法以及发展历史有机地融合在一起,既有对数学分析重要思想方法本质的深层次探讨,又有对有关哲学思想的深入分析,还有对美学思想、发展过程中数学家思想过程等的详细论述。 本书它不仅适用于数学分析的教学研究人员和理工科专业的学生,而且对从事数学史、数学哲学、数学方法论的研究人员来说也有很好的参考价值。 -
数学分析
《数学分析》 内容丰富,语言精炼,特别注意理论与应用相结合,古典分析方法与现代分析方法相结合。全书共分十六章,可供三学期教学之用。前五章讨论一元微积分,引入了连续函数的积分并得到微积分基本公式,使得不定积分的内容显得较为自然;第六章和第七章讨论黎曼积分及其推广,特点是与数列的极限理论对比发展,并且引入零测集的概念以更透彻地刻画可积函数;第八章至第十章介绍各种级数理论,除了对级数理论中的各种判别法做了更精炼的处理外,还适当安排了若干重要的应用,包括如何处理近似计算,以及三角级数如何用于几何问题和数论问题;第十一章起是多元微积分的内容,特点是较多地使用线性代数的语言来处理多元微分学中的重要结果(包括中值定理、反函数定理、拉格朗日乘数法等),以及更好地处理积分学中的重要结果(如可积性的刻画、多元积分的变量替换公式、各种积分之间的联系等)。 《数学分析》可作为综合性大学数学系各专业数学分析课程的教材或教学参考书,也特别适用于国家理科基地班的微积分教学,还可供科技工作者参考。 -
Analysis II
-
数学分析中的反例