-
Mahout实战
通过收集数据来学习和演进的计算机系统威力无穷。Mahout作为Apache的开源机器学习项目,把推荐系统、分类和聚类等领域的核心算法浓缩到了可扩展的现成的库中。使用Mahout,你可以立即在自己的项目中应用亚马逊、Netflix及其他互联网公司所采用的机器学习技术。 本书出自Mahout核心成员之手,得到Apache官方推荐,权威性毋庸置疑。作者凭借多年实战经验,为读者展现了丰富的应用案例,并细致地介绍了Mahout的解决之道。本书还重点讨论了可扩展性问题,介绍了如何利用Apache Hadoop框架应对大数据的挑战。 本书内容: • 利用分组数据实现个性化推荐; • 寻找数据中的逻辑簇; • 通过即时分类实现过滤与调优。 -
推荐系统
编辑推荐: 通过对本书的学习,读者不仅可以全面系统地了解该领域的基础原理,还能试验如何搭建一套真正的推荐系统。 —— 百度主任架构师、百度技术委员会主席 廖若雪 本书比较全面地介绍了推荐系统涉及的相关知识点,很适合对于推荐系统感兴趣的相关人员作为入门教程,目前能够系统全面介绍相关技术的中文书籍还显得匮乏,相信这本译著对于缓解这种情况大有裨益。 ——新浪微博数据挖掘技术专家 张俊林 本书不但介绍了比较成熟的经典算法,还介绍了最近几年的一些新进展,并辅之以实际应用的案例介绍。希望看到越来越多的朋友加入到推荐引擎的研究和应用中来! ——百分点信息科技有限公司首席运营官兼技术副总裁 张韶峰 由蒋凡执笔翻译的这本《推荐系统》是一本从基础介绍推荐引擎的难得的好书,给人启迪良多。愿越来越多的互联网爱好者认真阅读本书,走在互联网发展大潮的前沿,成为下一代互联网产品真正需要的人才。 ——人民搜索商务搜索部总监 常兴龙 读者评价: 这是迄今为止市面上所有讲推荐系统的书中最全面、最实用的一本入门指南。如果你是教这门课的大学老师,万万不能错过这本“推荐系统大全”。尤其值得称道的是,这本书广泛涵盖了不同类型的推荐系统,并对它们逐一进行了鞭辟入里、细致入微的剖析。虽然这本书定位于初中级读者,但是我认为即使是经验丰富的专业人员,也会在其中发现新鲜有趣的内容。 ——Robin Burke, 芝加哥德保罗大学教授 本书涵盖了推荐系统领域的全部知识,并为应对未来新的挑战提供了前瞻性建议。书中全面解释了一系列生成推荐的经典算法和方法,概述了源自社交计算和语义网的新手段对推荐系统的作用。希望这本书能够点燃你的激情,释放你的创造力和进取精神,把推荐系统的研究与应用推向新的高度。 ——Joseph A. Konstan, 美国明尼苏达大学教授 内容简介: 本书全面阐述了开发最先进推荐系统的方法,其中呈现了许多经典算法,并讨论了如何衡量推荐系统的有效性。书中内容分为基本概念和最新进展两部分:前者涉及协同推荐、基于内容的推荐、基于知识的推荐、混合推荐方法,推荐系统的解释、评估推荐系统和实例分析;后者包括针对推荐系统的攻击、在线消费决策、推荐系统和下一代互联网以及普适环境中的推荐。此外,本书还包含大量的图、表和示例,有助于读者理解和把握相关知识。 本书适用于从事搜索引擎、推荐算法、数据挖掘等研发工作的专业人员以及对推荐系统感兴趣的读者。 -
大数据
大数据:互联网大规模数据挖掘与分布式处理,ISBN:9787115291318,作者:(美) Anand Rajaraman (美) Jeffrey David Ullman 著,王 斌 译 -
Bayesian Data Analysis, Third Edition
This third edition of a classic textbook presents a comprehensive introduction to Bayesian data analysis. Written for students and researchers alike, the text is written in an easily accessible manner with chapters that contain many exercises as well as detailed worked examples taken from various disciplines. This third edition provides two new chapters on Bayesian nonparametrics and covers computation systems BUGS and R. It also offers enhanced computing advice. The book's website includes solutions to the problems, data sets, software advice, and other ancillary material. -
神经网络与机器学习(原书第3版)
神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响最为广泛的是Simon Haykin的《神经网络原理》(第3版更名为《神经网络与机器学习》)。在本书中,作者结合近年来神经网络和机器学习的最新进展,从理论和实际应用出发,全面、系统地介绍了神经网络的基本模型、方法和技术,并将神经网络和机器学习有机地结合在一起。 本书不但注重对数学分析方法和理论的探讨,而且也非常关注神经网络在模式识别、信号处理以及控制系统等实际工程问题的应用。本书的可读性非常强,作者举重若轻地对神经网络的基本模型和主要学习理论进行了深入探讨和分析,通过大量的试验报告、例题和习题来帮助读者更好地学习神经网络。 本版在前一版的基础上进行了广泛修订,提供了神经网络和机器学习这两个越来越重要的学科的最新分析。 本书特色: 1. 基于随机梯度下降的在线学习算法;小规模和大规模学习问题。 2. 核方法,包括支持向量机和表达定理。 3. 信息论学习模型,包括连接、独立分量分析(ICA)、一致独立分量分析和信息瓶颈。 4. 随机动态规划,包括逼近和神经动态规划。 5. 逐次状态估计算法,包括卡尔曼和粒子滤波器。 6. 利用逐次状态估计算法训练递归神经网络。 7. 富有洞察力的面向计算机的试验。 -
支持向量机
《支持向量机:理论、算法与拓展》以分类问题(模式识别、判别分析)和回归问题为背景,介绍支持向量机的基本理论、方法和应用。特别强调对所讨论的问题和处理方法的实质进行直观的解释和说明,因此具有很强的可读性。为使具有一般高等数学知识的读者能够顺利阅读,书中首先介绍了最优化的基础知识。《支持向量机:理论、算法与拓展》可作为理工类、管理学等专业的高年级本科生、研究生和教师的教材或教学参考书,也可供相关领域的科研人员和实际工作者阅读参考。