-
Hadoop权威指南(中文版)
本书是您纵情享用数据之美的得力助手。作为处理海量数据集的理想工具,Apache Hadoop架构是MapReduce算法的一种开源应用,是Google(谷歌)开创其帝国的重要基石。本书内容丰富,展示了如何使用Hadoop构建可靠、可伸缩的分布式系统,程序员可从中探索如何分析海量数据集,管理员可以了解如何建立与运行Hadoop集群。. 本书完全通过案例学习来展示如何用Hadoop解决特殊问题,它将帮助您: 使用Hadoop分布式文件系统(HDFS)来存储海量数据集,通过MapReduce对这些数据集运行分布式计算.. 熟悉Hadoop的数据和I/O构件,用于压缩、数据集成、序列化和持久处理 洞悉编写MapReduce实际应用程序时常见陷阱和高级特性 设计、构建和管理专用的Hadoop集群或在云上运行Hadoop 使用Pig这种高级的查询语言来处理大规模数据 利用HBase这个Hadoop数据库来处理结构化和半结构化数据 学习Zookeeper,这是一个用于构建分布式系统的协作原语工具箱 如果您拥有海量数据,无论是GB级还是PB级,Hadoop都是完美的选择。本书是这方面最全面的参考。 -
大规模分布式系统架构与设计实战(含光盘)
【编辑推荐】 绝技源于江湖、将军发于卒伍,本书包含作者从程序员到首席架构师十多年职业生涯所积累的实战经验。 这不是一本讲怎么使用Hadoop的书,而是一本讲实现Hadoop功能的书,本书系统讲解构建大规模分布式系统的核心技术和实现方法,包含开源的代码,手把手教你掌握分布式技术 【内容简介】 本书从作者的实战经验出发,深入浅出地讲解了如何建立一个Hadoop那样的分布式系统,实现对多台计算机CPU、内存、硬盘的统一利用,从而获取强大计算能力去解决复杂问题。一般互联网企业的分布式存储计算系统都是个大平台,系统复杂、代码庞大,而且只适合公司的业务,工程师很难下载安装到自己的电脑里学习和吃透。本书对分布式核心技术进行了大量归纳和总结,并从中抽取出一套简化的框架和编程API进行讲解,方便工程师了解分布式系统的主要技术实现。这不是一本空谈概念、四处摘抄的书,这本书包含了大量精炼示例,手把手教你掌握分布式核心技术。 本书主要内容 分布式并行计算的基本原理解剖; 分布式协调的实现,包括如何实现公共配置管理,如何实现分布式锁,如何实现集群管理等; 分布式缓存的实现,包括如何提供完整的分布式缓存来利用多机内存能力; 消息队列的实现,包括如何实现发送和接收模式; 分布式文件系统的实现,包括如何像操作本地文件一样操作远程文件,并利用多机硬盘存储能力; 分布式作业调度平台的实现,包括资源隔离、资源调度等。 【参考阅读】 978-7-111-43052-0 大规模分布式存储系统:原理解析与架构实战 978-7-111-40392-0 分布式系统:概念与设计(原书第5版) 978-7-111-45244-7 Hadoop应用开发技术详解 978-7-111-41766-8 Hadoop技术内幕:深入解析Hadoop Common和HDFS架构设计与实现原理 978-7-111-42226-6 Hadoop技术内幕:深入解析MapReduce架构设计与实现原理 978-7-111-44534-0 Hadoop技术内幕:深入解析YARN架构设计与实现原理 978-7-111-43514-3 网站数据分析:数据驱动的网站管理、优化和运营 978-7-111-42591-5 数据挖掘:实用案例分析 -
Hadoop: The Definitive Guide
Apache Hadoop is ideal for organizations with a growing need to store and process massive application datasets. Hadoop: The Definitive Guide is a comprehensive resource for using Hadoop to build reliable, scalable, distributed systems. Programmers will find details for analyzing large datasets with Hadoop, and administrators will learn how to set up and run Hadoop clusters. The book includes case studies that illustrate how Hadoop solves specific problems. Organizations large and small are adopting Apache Hadoop to deal with huge application datasets. Hadoop: The Definitive Guide provides you with the key for unlocking the wealth this data holds. Hadoop is ideal for storing and processing massive amounts of data, but until now, information on this open-source project has been lacking -- especially with regard to best practices. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems. Programmers will find details for analyzing large datasets with Hadoop, and administrators will learn how to set up and run Hadoop clusters. With case studies that illustrate how Hadoop solves specific problems, this book helps you: * Learn the Hadoop Distributed File System (HDFS), including ways to use its many APIs to transfer data * Write distributed computations with MapReduce, Hadoop's most vital component * Become familiar with Hadoop's data and IO building blocks for compression, data integrity, serialization, and persistence * Learn the common pitfalls and advanced features for writing real-world MapReduce programs * Design, build, and administer a dedicated Hadoop cluster * Use HBase, Hadoop's database for structured and semi-structured data And more. Hadoop: The Definitive Guide is still in progress, but you can get started on this technology with the Rough Cuts edition, which lets you read the book online or download it in PDF format as the manuscript evolves. -
Hadoop: The Definitive Guide
Apache Hadoop is ideal for organizations with a growing need to store and process massive application datasets. Hadoop: The Definitive Guide is a comprehensive resource for using Hadoop to build reliable, scalable, distributed systems. Programmers will find details for analyzing large datasets with Hadoop, and administrators will learn how to set up and run Hadoop clusters. The book includes case studies that illustrate how Hadoop solves specific problems. Organizations large and small are adopting Apache Hadoop to deal with huge application datasets. Hadoop: The Definitive Guide provides you with the key for unlocking the wealth this data holds. Hadoop is ideal for storing and processing massive amounts of data, but until now, information on this open-source project has been lacking -- especially with regard to best practices. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems. Programmers will find details for analyzing large datasets with Hadoop, and administrators will learn how to set up and run Hadoop clusters. With case studies that illustrate how Hadoop solves specific problems, this book helps you: * Learn the Hadoop Distributed File System (HDFS), including ways to use its many APIs to transfer data * Write distributed computations with MapReduce, Hadoop's most vital component * Become familiar with Hadoop's data and IO building blocks for compression, data integrity, serialization, and persistence * Learn the common pitfalls and advanced features for writing real-world MapReduce programs * Design, build, and administer a dedicated Hadoop cluster * Use HBase, Hadoop's database for structured and semi-structured data And more. Hadoop: The Definitive Guide is still in progress, but you can get started on this technology with the Rough Cuts edition, which lets you read the book online or download it in PDF format as the manuscript evolves. -
Hadoop实战
本书是一本系统且极具实践指导意义的Hadoop工具书和参考书。内容全面,对Hadoop整个技术体系进行了全面的讲解,不仅包括HDFS和MapReduce这两大核心内容,而且还包括Hive、HBase、Mahout、Pig、ZooKeeper、Avro、Chukwa等与Hadoop相关的子项目的内容。实战性强,为各个知识点精心设计了大量经典的小案例,易于理解,可操作性强。 全书一共18章:第1章全面介绍了Hadoop的概念、优势、项目结构、体系结构,以及它与分布式计算的关系;第2章详细讲解了Hadoop集群的安装和配置,以及常用的日志分析技巧;第3章分析了Hadoop在Yahoo!、eBay、Facebook和百度的应用案例,以及Hadoop平台上海量数据的排序;第4-7章深入地讲解了MapReduce计算模型、MapReduce应用的开发方法、MapReduce的工作机制,同时还列出了多个MapReduce的应用案例,涉及单词计数、数据去重、排序、单表关联和多表关联等内容;第8-11章全面地阐述了Hadoop的I/O操作、HDFS的原理与基本操作,以及Hadoop的各种管理操作,如集群的维护等;第12-17章详细而系统地讲解了Hive、HBase、Mahout、Pig、ZooKeeper、Avro、Chukwa等所有与Hadoop相关的子项目的原理及使用,以及这些子项目与Hadoop的整合使用;第18章以实例的方式讲解了常用Hadoop插件的使用和Hadoop插件的开发。 本书既适合没有Hadoop基础的初学者系统地学习,又适合有一定Hadoop基础但是缺乏实践经验的读者实践和参考。 -
Hadoop实战
本书是一本系统且极具实践指导意义的Hadoop工具书和参考书。内容全面,对Hadoop整个技术体系进行了全面的讲解,不仅包括HDFS和MapReduce这两大核心内容,而且还包括Hive、HBase、Mahout、Pig、ZooKeeper、Avro、Chukwa等与Hadoop相关的子项目的内容。实战性强,为各个知识点精心设计了大量经典的小案例,易于理解,可操作性强。 全书一共18章:第1章全面介绍了Hadoop的概念、优势、项目结构、体系结构,以及它与分布式计算的关系;第2章详细讲解了Hadoop集群的安装和配置,以及常用的日志分析技巧;第3章分析了Hadoop在Yahoo!、eBay、Facebook和百度的应用案例,以及Hadoop平台上海量数据的排序;第4-7章深入地讲解了MapReduce计算模型、MapReduce应用的开发方法、MapReduce的工作机制,同时还列出了多个MapReduce的应用案例,涉及单词计数、数据去重、排序、单表关联和多表关联等内容;第8-11章全面地阐述了Hadoop的I/O操作、HDFS的原理与基本操作,以及Hadoop的各种管理操作,如集群的维护等;第12-17章详细而系统地讲解了Hive、HBase、Mahout、Pig、ZooKeeper、Avro、Chukwa等所有与Hadoop相关的子项目的原理及使用,以及这些子项目与Hadoop的整合使用;第18章以实例的方式讲解了常用Hadoop插件的使用和Hadoop插件的开发。 本书既适合没有Hadoop基础的初学者系统地学习,又适合有一定Hadoop基础但是缺乏实践经验的读者实践和参考。