-
微分流形与黎曼几何引论
《微分流形与黎曼几何引论(英文版 第2版修订版)》是一本非常好的微分流形入门书。全书从一些基本的微积分知识入手,然后一点点深入介绍,主要内容有:流形介绍、多变量函数和映射、微分流形和子流形、流形上的向量场、张量和流形上的张量场、流形上的积分法、黎曼流形上的微分法以及曲率。书后有难度适中的习题,全书配有很多精美的插图。 《微分流形与黎曼几何引论(英文版 第2版修订版)》非常适合初学者阅读,可作为数学系、物理系、机械系等理工科高年级本科生和研究生的教材。 -
流形的拓扑学
拓扑学的方法与结果在各个数学分支中有着广泛的应用,因此适当选择其中的内容供各个分支的研究者与教师之用是一个很重要的工作。本书作者以微分流形为中心写了这本书,涉及拓扑学的广泛的领域并在分析数学、几何学乃至理论物理学中均可得到重要的应用。本书的主要内容是:微分流形、示性类理论、表示论大意、Hodge理论、Hirzebruch指标定理、Riemann-Roch定理、Atiyah-Singer指标定理和Gauss-Bonnet定理等。 -
微分流形初步(第二版)
《研究生教学用书:微分流形初步》是微分流形理论的入门教材,是联系经典数学和当代数学文献的桥梁,主要内容是介绍微分流形的基本概念和例子、微分流形上的光滑切向量场、光滑张量场、外微分式的运算和性质,以及黎曼流形、李群、微分纤维丛的初步知识。全书的叙述深入浅出,平易流畅,重点突出,强调几何背景,着重介绍在微分流形上如何通过局部坐标系来处理大范围定义的数学对象。通过《研究生教学用书:微分流形初步》的学习,会在微分流形的理论和应用方面打下坚实的基础,并且为学习当代数学文献创造条件。 -
微分几何
《微分几何:流形、曲线和曲面(第2版)(修订本)》主要由法国资深微分几何学家贝尔热在巴黎大学多年讲授微分几何课程讲稿的基础上编纂而成。《微分几何:流形、曲线和曲面(第2版)(修订本)》强调几何与分析的有机结合,始终坚持对于分析,揭露其几何实质,而对于几何,则洞察其分析精髓。《微分几何:流形、曲线和曲面(第2版)(修订本)》对于常微分方程、单位分解、临界点、拓扑度和流形上的微积分等研究微分几何的各种工具做了相当充分的讲解。内容重点是曲线的局部和整体理论,对于曲面的局部和整体理论则做了比较全面的概述,而对于其详尽的证明则推荐相关的文献供读者查阅。书中配备了丰富的习题。《微分几何:流形、曲线和曲面(第2版)(修订本)》是基础数学和应用数学系本科生乃至其他理工科学生学习微分流形和微分几何的优秀参考书。 -
微分几何讲义
内 容 简 介 本书系统地论述了微分几何的基本知识。全书共七章并两个附录。作者以较大的 篇幅,即前三章和第六章介绍了流形、多重线性函数、向量场、外微分、李群和活动标架 法等基本知识和工具。在具备了上述宽广而坚实的基础上,论述微分几何的核心问题, 即连络、黎曼几何以及曲面论等。第七章复流形,既是当前十分活跃的研究领域,也是 第一作者研究成果卓著的领域之一,包含有作者独到的见解和简捷的方法。最后两个 附录,介绍了极小曲面与规范场理论,为这两活跃的前沿领域提出了不少进一步研究 课题。 此书适用于高等院校数学专业和理论物理专业的高年级学生、研究生阅读,并且 可供数学工作者和物理工作者参考。 目 录 第一章 微分流形 1微分流形的定义 2切空间 3子流形 4Frobenius定理 第二章 多重线性函数 1张量积 2张量 3外代数 第三章 外微分 1张量丛 2外微分 3外微分式的积分 4Stokes公式 第四章 连络 1矢量丛上的连络 2仿射连络 3标架丛上的连络 第五章 黎曼流形 1黎曼几何的基本定理 2测地法坐标 3截面曲率 4Gauss-Bonnet定理 5完全性 第六章 李群和活动标架法 1李群 2李氏变换群 3活动标架法 4曲面论 第七章 复流形 1复流形 2矢量空间上的复结构 3近复流形 4复矢量丛上的连络 5Hermite流形和kah1er流形 附录一 欧氏空间中的曲线和曲面 1.切线回转定理 2.四顶点定理 3.平面曲线的等周不等式 4.空间曲线的全曲率 5.空间曲线的变形 6.Gauss-Bonnet公式 7.Cohn-Vossen和Minkowski的唯一性定理 8.关于极小曲面的Bernstein定理 附录二 微分几何与理论物理 参考文献 -
流形上的微积分