目录
出版说明
序
1 Probability Theory
1.1 Set Theory
1.2 Basics of Probability Theory
1.2.1 Axiomatic Foundations
1.2.2 The Calculus of Probabilities
1.2.3 Counting
1.2.4 Enumerating Outcomes
1.3 Conditional Probability and Independence
1.4 Random Variables
1.5 Distribution Functions
1.6 Density and Mass Functions
1.7 Exercises
1.8 Miscellanea
2 Transformations and Expectations
2.1 Distributions of Functions of a Random Variable
2.2 Expected Values
2.3 Moments and Moment Generating Functions
2.4 Differentiating Under an Integral Sign
2.5 Exercises
2.6 Miscellanea
3 Common Families of Distributions
3.1 Introduction
3.2 Discrete Distributions
3.3 Continuous Distributions
3.4 Exponential Families
3.5 Location and Scale Families
3.6 Inequalities and Identities
3.6.1 Probability Inequalities
3.6.2 Identities
3.7 Exercises
3.8 Miscellanea
4 Multiple Random Variables
4.1 Joint and Marginal Distributions
4.2 Conditional Distributions and Independence
4.3 Bivariate Transformations
4.4 Hierarchical Models and Mixture Distributions
4.5 Covariance and Correlation
4.6 Multivariate Distributions
4.7 Inequalities
4.7.1 Numerical Inequalities
4.7.2 Functional Inequalities
4.8 Exercises
4.9 Miscellanea
5 Properties of a Random Sample
5.1 Basic Concepts of Random Samples
5.2 Sums of Random Variables from a Random Sample
5.3 Sampling from the Normal Distribution
5.3.1 Properties of the Sample Mean and Variance
5.3.2 The Derived Distributions: Student's t and Snedecor's F
5.4 Order Statistics
5.5 Convergence Concepts
5.5.1 Convergence in Probability
5.5.2 Almost Sure Convergence
5.5.3 Convergence in Distribution
5.5.4 The Delta Method
5.6 Generating a Random Sample
5.6.1 Direct Methods
5.6.2 Indirect Methods
5.6.3 The Accept/Reject Algorithm
5.7 Exercises
5.8 Miscellanea
6 Principles of Data Reduction
6.1 Introduction
6.2 The Sufficiency Principle
6.2.1 Sufficient Statistics
6.2.2 Minimal Sufficient Statistics
6.2.3 Ancillary Statistics
6.2.4 Sufficient, Ancillary, and Complete Statistics
……
7 Point Estimation
8 Hypothesis Testing
8.1 Introduction
9 Interval Estimation
10 Asymptotic Evaluations
11 Analysis of Variance and Regression
12 Regression Models
Appendix: Computer Algebra
Table of Common Distributions
References
Author Index
Subject Index
【展开】
【收起】
内容简介
雷奥奇·卡塞拉、罗杰L.贝耶编著的《统计推断(英文版原书第2版)》从概率论的基础开始,通过例子与习题的旁征博引,引进了大量近代统计处理的新技术和一些国内同类教材中不能见而广为使用的分布。其内容包括工科概率论入门、经典统计和现代统计的基础,又加进了不少近代统计中数据处理的实用方法和思想,例如:Bootstrap再抽样法、刀切(Jackknife)估计、EM算法、Logistic回归、稳健(Robust)回归、Markov链、Monte Carlo方法等。它的统计内容与国内流行的教材相比,理论较深,模型较多,案例的涉及面要广,理论的应用面要丰富,统计思想的阐述与算法更为具体。《统计推断(英文版原书第2版)》可作为工科、管理类学科专业本科生、研究生的教材或参考书,也可供教师、工程技术人员自学之用。
【展开】
【收起】
下载说明
1、追日是作者栎年创作的原创作品,下载链接均为网友上传的的网盘链接!
2、相识电子书提供优质免费的txt、pdf等下载链接,所有电子书均为完整版!
下载链接
热门评论