组合数学

Richard A.Brualdi

文学

数学 组合数学 计算机 经典原版

2009-3

机械工业出版社

目录
Preface1 What Is Combinatorics? 1.1 Example: Perfect Covers of Chessboards 1.2 Example: Magic Squares 1.3 Example: The Four-Color Problem 1.4 Example: The Problem of the 36 OfFicers 1.5 Example: Shortest-Route Problem 1.6 Example: Mutually Overlapping Circles 1.7 Example: The Game of Nim 1.8 Exercises2 Permutations and Combinations 2.1 Four Basic Counting Principles 2.2 Permutations of Sets 2.3 Combinations (Subsets) of Sets 2.4 Permutations of Multisets 2.5 Combinations of Multisets 2.6 Finite Probability 2.7 Exercises3 The Pigeonhole Principle 3.1 Pigeonhole Principle: Simple Form 3.2 Pigeonhole Principle: Strong Form 3.3 A Theorem of Ramsey 3.4 Exercises4 Generating Permutations and Combinations 4.1 Generating Permutations 4.2 Inversions in Permutations 4.3 Generating Combinations 4.4 Generating r-Subsets 4.5 Partial Orders and Equivalence Relations 4.6 Exercises5 The Binomial Coefficients 5.1 Pascal's Triangle 5.2 The Binomial Theorem 5.3 Unimodality of Binomial Coefficients 5.4 The Multinomial Theorem 5.5 Newton's Binomial Theorem 5.6 More on Partially Ordered Sets 5.7 Exercises6 The Inclusion-Exclusion Principle and Applications 6.1 The Inclusion-Exclusion Principle 6.2 Combinations with Repetition 6.3 Derangements 6.4 Permutations with Forbidden Positions 6.5 Another Forbidden Position Problem 6.6 M6bius Inversion 6.7 Exercises7 Recurrence Relations and Generating Functions 7.1 Some Number Sequences 7.2 Generating Functions 7.3 Exponential Generating Functions 7.4 Solving Linear Homogeneous Recurrence Relations 7.5 Nonhomogeneous Recurrence Relations 7.6 A Geometry Example 7.7 Exercises8 Special Counting Sequences 8.1 Catalan Numbers 8.2 Difference Sequences and Stirling Numbers 8.3 Partition Numbers 8.4 A Geometric Problem 8.5 Lattice Paths and Schr6der Numbers 8.6 Exercises9 Systems of Distinct Representatives 9.1 General Problem Formulation 9.2 Existence of SDRs 9.3 Stable Marriages 9.4 Exercises10 Combinatorial .Designs 10.1 Modular Arithmetic 10.2 Block Designs 10.3 Steiner Triple Systems 10.4 Latin Squares 10.5 Exercises11 Introduction to Graph Theory 11.1 Basic Properties 11.2 Eulerian Trails 11.3 Hamilton Paths and Cycles 11.4 Bipartite Multigraphs 11.5 Trees 11.6 The Shannon Switching Game 11.7 More on Trees 11.8 Exercises12 More on Graph Theory 12.1 Chromat,ic Number 12.2 Plane and Planar Graphs 12.3 A Five-Color Theorem 12.4 Independence Number and Clique Number 12.5 Matching Number 12.6 Connectivity 12.7 Exercises13 Digraphs and Networks 13.1 Digraphs 13.2 Networks 13.3 Matchings in Bipartite Graphs Revisited 13.4 Exercises14 Polya Counting 14.1 Permutation and Symmetry Groups 14.2 Burnside's Theorem 14.3 Polya's Counting Formula 14.4 ExercisesAnswers and Hints to ExercisesBibliographyIndex
【展开】
内容简介
《组合数学(英文版)(第5版)》英文影印版由Pearson Education Asia Ltd.授权机械工业出版社独家出版。未经出版者书面许可,不得以任何方式复制或抄袭奉巾内容。仅限于中华人民共和国境内(不包括中国香港、澳门特别行政区和中同台湾地区)销售发行。《组合数学(英文版)(第5版)》封面贴有Pearson Education(培生教育出版集团)激光防伪标签,无标签者不得销售。English reprint edition copyright@2009 by Pearson Education Asia Limited and China Machine Press. Original English language title:Introductory Combinatorics,Fifth Edition(ISBN978—0—1 3-602040-0)by Richard A.Brualdi,Copyright@2010,2004,1999,1992,1977 by Pearson Education,lnc. All rights reserved. Published by arrangement with the original publisher,Pearson Education,Inc.publishing as Prentice Hall. For sale and distribution in the People’S Republic of China exclusively(except Taiwan,Hung Kong SAR and Macau SAR).
【展开】
下载说明

1、追日是作者栎年创作的原创作品,下载链接均为网友上传的的网盘链接!

2、相识电子书提供优质免费的txt、pdf等下载链接,所有电子书均为完整版!

下载链接
热门评论
  • uping001的评论
    雨下的这么大想怎样,毛概考砸了,天气又不给力,明天的组合数学哦多克,让我谢耳朵附身吧[祈祷][祈祷]#这才是生活# 长沙·河西大学城
  • 名字我还是没想好的评论
    #study account#可惜没如果 复习数学复习的好方啊啊啊啊,现在就这样,以后的离散数学近世代数组合数学等等等等可怎么办[拜拜][拜拜]想想也只怪自己,如果从开学到现在一直好好学也不至于期末这么痛苦[悲伤][悲伤]明天数分继续加油!!! 上海·吴泾镇
  • 一张狗CD的评论
    理不清套路今晚就不睡了[微笑]POI烂尾都不怕 还怕你组合数学[微笑]
  • 仉仉-的评论
    组合数学坚持到第二章的例题就看不懂了!!工程优化就是天书!天书!!谁能告诉我这个等式是为啥?!是为了啥!@组合数学@母函数[鼻涕]
  • phunter_lau的评论
    基本的数学基础训练还是很重要的,某个大botnet的dga算法就知道抄别人的伪随机数算法但是没有基本数学常识,导致伪随机数种子有一个特别简单的办法能猜出来。看来俄罗斯最近几年基础教育确实不行了,搞黑产也要熟读组合数学离散数学啊,要不然屁股都露出来了也不知道。
  • 诺言Melion文学小能手的评论
    考完点集塔普和泛函GD还有还有高观点胜利以后我特么的一定要浪一天 一整天!然而还有组合数学等着我[大哭]
  • 累了休息好么的评论
    组合数学出分了应该是最高分吧有的时候确实很气人可是不得不说有了你我学习是有动力的可是我真的难受要不要坚持
  • 爱动脑筋的随愿的评论
    想太多真的没有用哦 所以把组合数学考好我就赢了 哈尔滨·哈尔滨医科大...
  • 小晓_always_的评论
    一天看完组合数学,感觉要阵亡[衰][衰][衰]
  • 夏hua槿木挺的评论
    1933年5月22日,陈景润诞辰。1973年发表的论文《大偶数表为一个素数与不超过两个素数乘积之和》(即“1+2”),把哥德巴赫猜想的证明推进了一大步,被国际学术界推为“陈氏定理”。著有《数学趣味谈》、《组合数学》等。