目录
第一篇 复变函数论
第一章 复变函数
1.1 复数与复数运算
1.2 复变函数
1.3 导数
1.4 解析函数
1.5 平面标量场
1.6 多值函数
第二章 复变函数的积分
2.1 复变函数的积分
2.2 柯西定理
2.3 不定积分
2.4 柯西公式
第三章 幂级数展开
3.1 复数项级数
3.2 幂级数
3.3 泰勒级数展开
3.4 解析延拓
3.5 洛朗级数展开
3.6 孤立奇点的分类
第四章 留数定理
4.1 留数定理
4.2 应用留数定理计算实变函数定积分
4.3 计算定积分的补充例题
第五章 傅里叶变换
5.1 傅里叶级数
5.2 傅里叶积分与傅里叶变换
5.3 δ函数
第六章 拉普拉斯变换
6.1 拉普拉斯变换
6.2 拉普拉斯变换的反演
6.3 应用例
第二篇 数学物理方程
第七章 数学物理定解问题
7.1 数学物理方程的导出
7.2 定解条件
7.3 数学物理方程的分类
7.4 达朗n1尔公式定解问题
第八章 分离变数法
8.1 齐次方程的分离变数法
8.2 非齐次振动方程和输运方程
8.3 非齐次边界条件的处理
8.4 泊松方程
8.5 分离变数法小结
第九章 二阶常微分方程级数解法 本征值问题
9.1 特殊函数常微分方程
9.2 常点邻域上的级数解法
9.3 正则奇点邻域上的级数解法
9.4 施图姆一刘维尔本征值问题
第十章 球函数
10.1 轴对称球函数
10.2 连带勒让德函数
10.3 一般的球函数
第十一章 柱函数
11.1 三类柱函数
11.2 贝塞尔方程
11.3 柱函数的渐近公式
11.4 虚宗量贝塞尔方程
11.5 球贝塞尔方程
11.6 可化为贝塞尔方程的方程
第十二章 格林函数法
12.1 泊松方程的格林函数法
12.2 用电像法求格林函数
12.3 含时间的格林函数
12.4 用冲量定理法求格林函数
12.5 推广的格林公式及其应用
第十三章 积分变换法
13.1 傅里叶变换法
13.2 拉普拉斯变换法
13.3 小波变换简介
第十四章 保角变换法
14.1 保角变换的基本性质
14.2 某些常用的保角变换
第十五章 非线性数学物理问题简介
15.1 孤立子
15.2 混沌
附录
一、傅里叶变换函数表
二、拉普拉斯变换函数表
三、高斯函数和误差函数
四、勒让德方程的级数解(9.2.7)和(9.2.8)在x=±1发散
五、连带勒让德函数
六、贝塞尔函数表
七、诺伊曼函数
八、虚宗量贝塞尔函数虚宗量汉克尔函数
九、球贝塞尔函数
十、埃尔米特多项式
十一、拉盖尔多项式
十二、方程x ntan x=0的前六个根
十三、r函数( 第二类欧拉积分)
习题答案
参考书目
人名对照表
【展开】
【收起】
内容简介
本书系在第二版的基础上,根据当前的教学实际修订而成的。全书包括复变函数论,数学物理方程两部分,以数学物理中的偏微分方程定解问题的建立和求解为中心。本书保持了前两版教学紧密联系物理、讲解流畅的特点,并对内容做了适度精简。
本书可以作为综合大学、高等师范院校物理类各专业“数学物理方法”课程的教材,亦可共高等工科院校有关专业选用。
【展开】
【收起】
下载说明
1、追日是作者栎年创作的原创作品,下载链接均为网友上传的的网盘链接!
2、相识电子书提供优质免费的txt、pdf等下载链接,所有电子书均为完整版!
下载链接
热门评论