目录
Notation
Chapter 1 What Is Enumerative Combinatorics?
1.1 How to Count
1.2 Sets and Multisets
1.3 Permutation Statistics
1.4 The Twelvefold Way
Notes
References
A Note about the Exercises
Exercises
Solutions to Exercises
Chapter 2 Sieve Methods
2.1 Inclusion-Exclusion
2.2 Examples and Special Cases
2.3 Permutations with Restricted Positions
2.4 Ferrers Boards
2.5 V-partitions and Unimodal Sequences
2.6 Involutions
2.7 Determinants
Notes
References
Exercises
Solutions to Exercises
Chapter 3 Partially Ordered Sets
3.1 Basic Concepts
3.2 New Posets from Old
3.3 Lattices
3.4 Distributive Lattices
315 Chains in Distributive Lattices
3.6 The Incidence Algebra of a Locally Finite Poset
3.7 The MObius Inversion Formula
3.8 Techniques for Computing MObius Functions
3.9 Lattices and Their MObius Algebras
3.10 The MObius Function of a Semimodular Lattice
3.11 Zeta Polynomials
3.12 Rank-selection
3.13 R-labelings
3.14 Eulerian Posets
3.15 Binomial Posets and Generating Functions
3.16 An Application to Permutation Enumeration
Notes
References
Exercises
Solutions to Exercises
Chapter 4 Rational Generating Functions
4.1 Rational Power Series in One Variable
4.2 Further Ramifications
4.3 Polynomials
4.4 Quasi-polynomials
4.5 P-partitions
4.6 Linear Homogeneous Diophantine Equations
4.7 The Transfer-matrix Method
Notes
References
Exercises
Solutions to Exercises
Appendix Graph Theory Terminology
Index
Supplementary Problems
Errata and Addenda
【展开】
【收起】
内容简介
本书重点介绍生成函数的理论和应用,生成函数是计数组合学的基本工具。本书分四章介绍了计数、筛法、偏序集以及有理生成函数,并欢未包含在正文中的许多数学领域提供了入门知识。书中所选择的材料覆盖了计数组合学中应用范围最广以及与其他数学领域联系最密切的部分。另外,书中包含大量习题,并几乎对所有习题都提供了解答,有助于教学。
本书是两卷集计数组合学基础导论中的第1卷,适合于研究生和数学研究人员。
【展开】
【收起】
下载说明
1、追日是作者栎年创作的原创作品,下载链接均为网友上传的的网盘链接!
2、相识电子书提供优质免费的txt、pdf等下载链接,所有电子书均为完整版!
下载链接