-
数论
《数论:从汉穆拉比到勒让德的历史导引》内容简介:数论——或者一些人称之为的算术,是最古老、最纯粹、最有活力、最初等却也是最深奥的数学领域。这门学科具有“数学皇后”的名声绝非偶然。一些最为复杂的传统的数学思想便是由对数论的基本问题的研究发展起来的。 对数论有杰出贡献的韦伊,写成了诠释数论历史的这《数论:从汉穆拉比到勒让德的历史导引》;他的研究内容涵盖了大约三十六个世纪的算术工作——从一块可追溯到汉穆拉比王朝的古巴比伦的泥板到勒让德的《论数论》(1798)。韦伊一直希望向有较好教育背景的读者讲述他的研究领域,这促使他在问题的分析、数论方法的演变以及它们在数学中的意义方面使用了历史性的解读方法。在他的论述过程中,韦伊和读者一起来到现代数论的四位主要作者(费马、欧拉、拉格朗日、勒让德)的工作室,并在那里进行了一场仔细的、带有批判眼光的查验。《数论:从汉穆拉比到勒让德的历史导引》富含知识史的广博内容,对了解我们的文化遗产有很重要的贡献。 -
数学圈2
《数学圈2》主要分重游数学圈和相约数学圈两部分内容。其中重游数学圈主要介绍了从有理数到度量系统,从加减法到新教曲线,从小达罗的漫画到一个完人以及从柯西初露锋芒到维纳的信;相约数学圈主要介绍了从解释《圣经》到“绝妙的证明”,从过分的自重到数学的本质,从失落的手稿到希尔伯特之死以及从“非常”教授到思想车轮。通过这些内容,可以改变人们对数学和数学家的看法,把数学融入大众文化,回到人们的生活。 -
无法解出的方程
内容提要 约翰·塞巴斯蒂安·巴赫的音乐、自然界的基本力、魔方、配偶的选择有无共通之处?它们共同的特点是都具有某种对称性。对称性概念为科学和艺术之间、理论物理世界和我们日常生活的世界之间架起了桥梁。然而关于对称的“语言”——数学中的群论——却产生于最意想不到的来源:一种无法解出的方程式。几千年来,在遇到现在所说的五次方程之前,数学家已经逐渐解决了越来越困难的代数方程。但几个世纪过去了,五次方程仍然没有解,最后,两个数学天才彼此独立地发现了它不能用通常的方法解出,群论由此产生。这两个年轻的天才是挪威数学家尼尔斯·亨里克·阿贝尔和法国数学家埃瓦利斯特·伽罗瓦,他们最后都悲剧性地死去。事实上,伽罗瓦(时年20岁)在他致命的决斗前夕,草草地记录了他的证明的另一份简要总结,笔记本的边上有一句话:“我没有时间”。 无法解出的方程的故事是一本关于才华横溢的数学家的故事,也叙述了数学如何为其他学科添光增彩。在这本栩栩如生、曲折动人的书中,马里奥·利维奥以一种容易被人接受的方式展示了,群论是如何解释自然界和人造世界的对称性和秩序的。 -
数学前沿
《数学先锋·数学前沿1590年:现在》作为“数学先锋”丛书的第五本,收录了10位20世纪后半叶的数学家,他们每个人都在数学史上留下了自己的足迹。在美国成为数学研究中心的时代里,他们是更加多元化的国际数学大家庭的成员,构成了这个大家庭的横截面。在这个时期内,很多长期以来开放性的问题得到了解决,纯数学和应用数学得到了大发展,新的数学思想的引入使得主要技术进步成为可能。 《数学先锋·数学前沿1590年:现在》中收录的数学家反映了数学大家庭越来越多元化的趋势。数学知识的进步是所有民族、种族、国家和性别的天才共同智慧的结晶。他们来自美国、大不列颠、中国的香港和台湾、比利时和爱尔兰,他们是国际数学界的代表。 -
神秘的阿列夫
《神秘的阿列夫:数学、犹太神秘主义教派以及对无穷的探寻》主要内容:19世纪末,一位杰出的数学家在一所精神病院里身心逐渐衰弱而死去。他一系列先进观点造成的最伟大的成就,是他对无穷的特性的超前理解。这就是乔治·康托(GeorgCantor)的故事:他如何得到他的理论,他的改变了世界面貌的研究成果对后代产生了怎样深远的影响。 康托充满智慧的、深奥哲学观点的研究工作,有古希腊数学和在喀巴拉——中世纪犹太神秘主义教派里的源头。康托用阿列夫aleph——希姆莱字母表中的、伴有非同寻常联想的第一个字母——这个神秘数字来表示所有正整数的集合。它不是最大的数,因为——不存在最大的数,但它是一个总能趋近的终极数:恰如数字1之前不存在最后的分数。 -
费马大定理
《费马大定理》由上海译文出版社出版。