概率论沉思录

杰恩斯

文学

数学 概率论 概率 统计学 概率统计 统计 Probability 逻辑

2009-4

人民邮电出版社

目录
PartⅠ Principlesandelementaryapplications 1 Plausiblereasoning 1.1 Deductiveandplausiblereasoning 1.2 Analogieswith slcaltheories 1.3 Thethinkingcomputer 1.4 Introducingtherobot 1.5 Booleanalgebra 1.6 Adequatesetsofoperations 1.7 Thebasicdesiderata 1.8 Comments 1.8.1 Commonlanguagevs.formallogic 1.8.2 Nitpicking 2 Thequantitativerules 2.1 Theproductrule 2.2 Thesumrule 2.3 Qualitativeproperties 2.4 Numericalvalues 2.5 Notationandfinite-setspolicy 2.6 Comments 2.6.1 Suectlvevs.oectlve 2.6.2 G/3delstheorem 2.6.3 Venndiagrams 2.6.4 TheKolmogorovaxioms 3 Elementarysamplingtheory 3.1 Samplingwithoutreplacement 3.2 Logicvs.propensity 3.3 Reasoningfromlesspreciseinformation 3.4 Expectations 3.5 Otherformsandextensions 3.6 Probabilityasamathematicaltool 3.7 Thebinomialdistribution 3.8 Samplingwithreplacement 3.8.1 Digression:asermononrealityvs.models 3.9 Correctionforcorrelations 3.10 Simplification 3.11 Comments 3.11.1 Alookahead 4 Elementaryhypothesistesting 4.1 Priorprobabilities 4.2 Testingbinaryhypotheseswithbinarydata 4.3 Nonextensibilitybeyondthebinarycase 4.4 Multiplehypothesistesting 4.4.1 Digressiononanotherderivation 4.5 Continuousprobabilitydistributionfunctions 4.6 Testinganinfinitenumberofhypotheses 4.6.1 Historicaldigression 4.7 Simpleandcompound(orcomposite)hypotheses 4.8 Comments 4.8.1 Etymology 4.8.2 Whathaveweaccomplished? 5 Queerusesforprobabilitytheory 5.1 Extrasensoryperception 5.2 MrsStewartstelepathicpowers 5.2.1 Digressiononthenormalapproximation 5.2.2 BacktoMrsStewart 5.3 Converginganddivergingviews 5.4 Visualperception-evolutionintoBayesianity? 5.5 ThediscoveryofNeptune 5.5.1 Digressiononalternativehypotheses 5.5.2 BacktoNewton 5.6 Horseracingandweatherforecasting 5.6.1 Discussion 5.7 Paradoxesofintuition 5.8 Bayesianjurisprudence 5.9 Comments 5.9.1 Whatisqueer? 6 Elementaryparameterestimation 6.1 Inversionoftheumdistributions 6.2 BothNandRunknown 6.3 Uniformprior 6.4 Predictivedistributions 6.5 Truncateduniformpriors 6.6 Aconcaveprior 6.7 Thebinomialmonkeyprior 6.8 Metamorphosisintocontinuousparameterestimation 6.9 Estimationwithabinomialsamplingdistribution 6.9.1 Digressiononoptionalstopping 6.10 Compoundestimationproblems 6.11 AsimpleBayesianestimate:quantitativepriorinformation 6.11.1 Fromposteriordistributionfunctiontoestimate 6.12 Effectsofqualitativepriorinformation 6.13 Choiceofaprior 6.14 Onwiththecalculation! 6.15 TheJeffreysprior 6.16 Thepointofitall 6.17 Intervalestimation 6.18 Calculationofvariance 6.19 Generalizationandasymptoticforms 6.20 Rectangularsamplingdistribution 6.21 Smallsamples 6.22 Mathematicaltrickery 6.23 Comments 7 Thecentral,Gaussianornormaldistribution 7.1 Thegravitatingphenomenon 7.2 TheHerschel-Maxwellderivation 7.3 TheGaussderivation 7.4 HistoricalimportanceofGausssresult 7.5 TheLandonderivation 7.6 WhytheubiquitoususeofGausslandistributions? 7.7 Whytheubiquitoussuccess? 7.8 Whatestimatorshouldweuse? 7.9 Errorcancellation 7.10 Thenearirrelevanceofsamplingfrequencydistributions 7.11 Theremarkableefficiencyofinformationtransfer 7.12 Othersamplingdistributions 7.13 Nuisanceparametersassafetydevices 7.14 Moregeneralproperties 7.15 ConvolutionofGaussians 7.16 Thecentrallimittheorem 7.17 Accuracyofcomputations 7.18 Galtonsdiscovery 7.19 PopulationdynamicsandDarwinianevolution 7.20 Evolutionofhumming-birdsandflowers 7.21 Applicationtoeconomics 7.22 ThegreatinequalityofJupiterandSaturn 7.23 ResolutionofdistributionsintoGaussians 7.24 Hermitepolynomialsolutions 7.25 Fouriertransformrelations 7.26 Thereishopeafterall 7.27 Comments 7.27.1 Terminologyagain 8 Sufficiency,ancillarity,andallthat 8.1 Sufficiency 8.2 Fishersufficiency 8.2.1 Examples 8.2.2 TheBlackwell-Raotheorem 8.3 Generalizedsufficiency 8.4 Sufficiencyplusnuisanceparameters 8.5 Thelikelihoodprinciple 8.6 Ancillarity 8.7 Generalizedancillaryinformation 8.8 Asymptoticlikelihood:Fisherinformation 8.9 Combiningevidencefromdifferentsources 8.10 Poolingthedata 8.10.1 Fine-grainedpropositions 8.11 Samsbrokenthermometer 8.12 Comments 8.12.1 Thefallacyofsamplere-use 8.12.2 Afolktheorem 8.12.3 Effectofpriorinformation 8.12.4 Clevertricksandgamesmanship 9 Repetitiveexperiments:probabilityandfrequency 9.1 Physicalexperiments 9.2 Thepoorlyinformedrobot 9.3 Induction 9.4 Aretheregeneralinductiverules? 9.5 Multiplicityfactors 9.6 Partitionfunctionalgorithms 9.6.1 Solutionbyinspection 9.7 Entropyalgorithms 9.8 Anotherwayoflookingatit 9.9 Entropymaximization 9.10 Probabilityandfrequency 9.11 Significancetests 9.11.1 Impliedalternatives 9.12 Comparisonofpsiandchi-squared 9.13 Thechi-squaredtest 9.14 Generalization 9.15 Halleysmortalitytable 9.16 Comments 9.16.1 Theirrationalists 9.16.2 Superstitions 10 Physicsofrandomexperiments 10.1 Aninterestingcorrelation 10.2 Historicalbackground 10.3 Howtocheatatcoinanddietossing 10.3.1 Experimentalevidence 10.4 Bridgehands 10.5 Generalrandomexperiments 10.6 Inductionrevisited 10.7 Butwhataboutquantumtheory? 10.8 Mechanicsundertheclouds 10.9 Moreoncoinsandsymmetry 10.10 Independenceoftosses 10.11 Thearroganceoftheuninformed PartⅡ Advancedapplications 11 Discretepriorprobabilities:theentropyprinciple 11.1 Anewkindofpriorinformation 11.2 Minimum∑Pi2 11.3 Entropy:Shannonstheorem 11.4 TheWallisderivation 11.5 Anexample 11.6 Generalization:amorerigorousproof 11.7 Formalpropertiesofmaximumentropydistributions 11.8 Conceptualproblems-frequencycorrespondence 11.9 Comments 12 Ignorancepriorsandtransformationgroups 12.1 Whatarewetryingtodo? 12.2 Ignorancepriors 12.3 Continuousdistributions 12.4 Transformationgroups 12.4.1 Locationandscaleparameters 12.4.2 APoissonrate 12.4.3 Unknownprobabilityforsuccess 12.4.4 Bertrandsproblem 12.5 Comments 13 Decisiontheory,historicalbackground 13.1 Inferencevs.decision 13.2 DanielBernoullissuggestion 13.3 Therationaleofinsurance 13.4 Entropyandutility 13.5 Thehonestweatherman 13.6 ReactionstoDanielBernoulliandLaplace 13.7 Waldsdecisiontheory 13.8 Parameterestimationforminimumloss 13.9 Reformulationoftheproblem 13.10 Effectofvaryinglossfunctions 13.11 Generaldecisiontheory 13.12 Comments 13.12.1 Objectivityofdecisiontheory 13.12.2 Lossfunctionsinhumansociety 13.12.3 AnewlookattheJeffreysprior 13.12.4 Decisiontheoryisnotfundamental 13.12.5 Anotherdimension? 14 Simpleapplicationsofdecisiontheory 14.1 Definitionsandpreliminaries 14.2 Sufficiencyandinformation 14.3 Lossfunctionsandcriteriaofoptimumperformance 14.4 Adiscreteexample 14.5 Howwouldourrobotdoit? 14.6 Historicalremarks 14.6.1 Theclassicalmatchedfilter 14.7 Thewidgetproblem 14.7.1 SolutionforStage2 14.7.2 SolutionforStage3 14.7.3 SolutionforStage4 14.8 Comments 15 Paradoxesofprobabilitytheory 15.1 Howdoparadoxessurviveandgrow? 15.2 Summingaseriestheeasyway 15.3 Nonconglomerability 15.4 Thetumblingtetrahedra 15.5 Solutionforafinitenumberoftosses 15.6 Finitevs.countableadditivity 15.7 TheBorel-Kolmogorovparadox 15.8 Themarginalizationparadox 15.8.1 Ontogreaterdisasters 15.9 Discussion 15.9.1 TheDSZExample#5 15.9.2 Summary 15.10 Ausefulresultafterall? 15.11 Howtomass-produceparadoxes 15.12 Comments 16 Orthodoxmethods:historicalbackground 16.1 Theearlyproblems 16.2 Sociologyoforthodoxstatistics 16.3 RonaldFisher,HaroldJeffreys,andJerzyNeyman 16.4 Pre-dataandpost-dataconsiderations 16.5 Thesamplingdistributionforanestimator 16.6 Pro-causalandanti-causalbias 16.7 Whatisreal,theprobabilityorthephenomenon? 16.8 Comments 16.8.1 Communicationdifficulties 17 Principlesandpathologyoforthodoxstatistics 17.1 Informationloss 17.2 Unbiasedestimators 17.3 Pathologyofanunbiasedestimate 17.4 Thefundamentalinequalityofthesamplingvariance 17.5 Periodicity:theweatherinCentralPark 17.5.1 Thefollyofpre-filteringdata 17.6. ABayesiananalysis 17.7 Thefollyofrandomization 17.8 Fisher:commonsenseatRothamsted 17.8.1 TheBayesiansafetydevice 17.9 Missingdata 17.10 Trendandseasonalityintimeseries 17.10.1 Orthodoxmethods 17.10.2 TheBayesianmethod 17.10.3 ComparisonofBayesianandorthodoxestimates 17.10.4 Animprovedorthodoxestimate 17.10.5 Theorthodoxcriterionofperformance 17.11 Thegeneralcase 17.12 Comments 18 TheApdistributionandruleofsuccession 18.1 Memorystorageforoldrobots 18.2 Relevance 18.3 Asurprisingconsequence 18.4 Outerandinnerrobots 18.5 Anapplication 18.6 Laplacesruleofsuccession 18.7 Jeffreysobjection 18.8 Bassorcarp? 18.9 Sowheredoesthisleavetherule? 18.10 Generalization 18.11 Confirmationandweightofevidence 18.11.1 Isindifferencebasedonknowledgeorignorance? 18.12 Camapsinductivemethods 18.13 Probabilityandfrequencyinexchangeablesequences 18.14 Predictionoffrequencies 18.15 One-dimensionalneutronmultiplication 18.15.1 Thefrequentistsolution 18.15.2 TheLaplacesolution 18.16 ThedeFinettitheorem 18.17 Comments 19 Physicalmeasurements 19.1 Reductionofequationsofcondition 19.2 Reformulationasadecisionproblem 19.2.1 SermononGaussianerrordistributions 19.3 Theunderdeterminedcase:Kissingular 19.4 Theoverdeterminedcase:Kcanbemadenonsingular 19.5 Numericalevaluationoftheresult 19.6 Accuracyoftheestimates 19.7 Comments 19.7.1 Aparadox 20 Modelcomparison 20.1 Formulationoftheproblem 20.2 Thefairjudgeandthecruelrealist 20.2.1 Parametersknowninadvance 20.2.2 Parametersunknown 20.3 Butwhereistheideaofsimplicity? 20.4 Anexample:linearresponsemodels 20.4.1 Digression:theoldsermonstillanothertime 20.5 Comments 20.5.1 Finalcauses 21 Outliersandrobustness 21.1 Theexperimentersdilemma 21.2 Robustness 21.3 Thetwo-modelmodel 21.4 Exchangeableselection 21.5 ThegeneralBayesiansolution 21.6 Pureoutliers 21.7 Onerecedingdatum 22 Introductiontocommunicationtheory 22.1 Originsofthetheory 22.2 Thenoiselesschannel 22.3 Theinformationsource 22.4 DoestheEnglishlanguagehavestatisticalproperties? 22.5 Optimumencoding:letterfrequenciesknown 22.6 Betterencodingfromknowledgeofdigramfrequencies 22.7 Relationtoastochasticmodel 22.8 Thenoisychannel AppendixA Otherapproachestoprobabilitytheory A.1 TheKolmogorovsystemofprobability A.2 ThedeFinettisystemofprobability A.3 Comparativeprobability A.4 Holdoutsagainstuniversalcomparability A.5 Speculationsaboutlatticetheories AppendixB Mathematicalformalitiesandstyle B.1 Notationandlogicalhierarchy B.2 Ourcautiousapproachpolicy B.3 WillyFelleronmeasuretheory B.4 Kroneckervs.Weierstrasz B.5 Whatisalegitimatemathematicalfunction? B.5.1 Delta-functions B.5.2 Nondifferentiablefunctions B.5.3 Bogusnondifferentiablefunctions B.6 Countinginfinitesets? B.7 TheHausdorffsphereparadoxandmathematicaldiseases B.8 WhatamIsupposedtopublish? B.9 Mathematicalcourtesy AppendixC Convolutionsandcumulants C.1 Relationofcumulantsandmoments
【展开】
内容简介
《概率论沉思录(英文版)》将概率和统计推断融合在一起,用新的观点生动地描述了概率论在物理学、数学、经济学、化学和生物学等领域中的广泛应用,尤其是它阐述了贝叶斯理论的丰富应用,弥补了其他概率和统计教材的不足。全书分为两大部分。第一部分包括10章内容,讲解抽样理论、假设检验、参数估计等概率论的原理及其初等应用;第二部分包括12章内容,讲解概率论的高级应用,如在物理测量、通信理论中的应用。《概率论沉思录(英文版)》还附有大量习题,内容全面,体例完整。 《概率论沉思录(英文版)》内容不局限于某一特定领域,适合涉及数据分析的各领域工作者阅读,也可作为高年级本科生和研究生相关课程的教材。
【展开】
下载说明

1、追日是作者栎年创作的原创作品,下载链接均为网友上传的的网盘链接!

2、相识电子书提供优质免费的txt、pdf等下载链接,所有电子书均为完整版!

下载链接
热门评论
  • 敏敏rainnic的评论
    不能承受之轻,红楼,little SAS,心理学与生活,概率论沉思录,西方哲学史,纯粹理性批判,逻辑,沉思录,斐多篇,盖茨比,陌生女人的来信,百年孤独,中国哲学史,伟大的博弈,1q84。。。下学期要读的书,很多看了一半就撇一边了,下学期争取看完。
  • TerryKe1990的评论
    在读《概率论沉思录》 “从《数学之美》里的推荐找来的,不知道能看懂多少。才知道,概率与统计不仅不是空中楼阁的纯数学理论,而且深深影响了通信行业、自然语言处理、数据挖掘等领域,未来前..” 网页链接
  • rickjin的评论
    今天我在北大的张化瑞老师给了我一个 comment, 指出 Jaynes 在《概率论沉思录》中的基于最大熵原则推导出正态分布的结论, 最早是 Shannon 本人在他的开山之作 The Mathematical Theory of Communication 中的 part 3 给出的。Shannon 的这篇牛文我只读了前半部分, 忏愧。
  • 小飞鱼_露的评论
    《概率论沉思录-Probability theory:Logic of science》非常好的一本书,尽管才看了第一章,里面关于演绎推理和合情推理部分的讲解已经深深的吸引了我。附上simbaforest的第一章节翻译版本 网页链接
  • F_major的评论
    概率论沉思录什么时候能有中译本啊……这沉思一个月也沉不完啊
  • 净莲11的评论
    准备去amaon买《概率论沉思录》的英语原著,按照作者的观点,我们还是在找万物类象的pattern,去 interpret nature//@青萍快剑_Horry: //@Chen_1st:别总推荐大家看pattern recognition and machine learning之类的了,推荐下《概率论沉思录》(网页链接)吧,带作者观点的统计学发展史。
  • Chen_1st的评论
    别总推荐大家看pattern recognition and machine learning之类的了,推荐下《概率论沉思录》(网页链接)吧,带作者观点的统计学发展史。去年六月@图书出版人杨海玲 老师送我一本,春节才有空翻出来看,每天读几页,才理解什么叫以史为鉴,可以知兴替,技术发展也是兴替啊。
  • 任坤Ken的评论
    「概率论沉思录」(Probability Theory: The Logic of Science)果然是本奇书啊![泪] 我在:思明南路
  • 寒夜雪溪的评论
    我在@亚马逊中国 找到了 概率论沉思录(英文版) - 杰恩斯 (E.T.Jaynes) ,分享给你: 网页链接 (分享自 @亚马逊
  • 小铁-死宅码农的评论
    今天才知道「概率论沉思录」的作者就是最大熵原理的提出者。