目录
第一章 绪论
第二章 有指导学习概述
第三章 回归的线性方法
第四章 分类的线性方法
第五章 基展开与正则化
第六章 核方法
第七章 模型评估与选择
第八章 模型推理和平均
第九章 加法模型、树和相关方法
第十章 提升和加法树
第十一章 神经网络
第十二章 支持向量机和柔性判别
第十三章 原型方法和最近邻
第十四章 无指导学习
【展开】
【收起】
内容简介
《统计学习基础:数据挖掘、推理与预测》介绍了这些领域的一些重要概念。尽管应用的是统计学方法,但强调的是概念,而不是数学。许多例子附以彩图。《统计学习基础:数据挖掘、推理与预测》内容广泛,从有指导的学习(预测)到无指导的学习,应有尽有。包括神经网络、支持向量机、分类树和提升等主题,是同类书籍中介绍得最全面的。计算和信息技术的飞速发展带来了医学、生物学、财经和营销等诸多领域的海量数据。理解这些数据是一种挑战,这导致了统计学领域新工具的发展,并延伸到诸如数据挖掘、机器学习和生物信息学等新领域。许多工具都具有共同的基础,但常常用不同的术语来表达。
【展开】
【收起】
下载说明
1、追日是作者栎年创作的原创作品,下载链接均为网友上传的的网盘链接!
2、相识电子书提供优质免费的txt、pdf等下载链接,所有电子书均为完整版!
下载链接