-
计算复杂性的现代方法
计算复杂性的现代方法,ISBN:9787510042867,作者:(美)阿罗拉 著 -
泛函分析第二教程
泛函分析第二教程(第二版),ISBN:9787040247503,作者:夏道行 等编著 -
随机微分方程导论与应用
《随机微分方程导论与应用(第6版)》在导言中叙述了6个问题,随机微分方程扮演着本质的角色。在第2章介绍上述问题中的数学模型所需的一些基本的数学概念。由此引出第3章中的Ito积分。在第4章发展到随机分析(Ito公式),第5章则用它解某些随机微分方程,包括在导言中介绍的前面两个问题,在第6章利用随机分析介绍线性滤波问题的解(问题3作为一个例子)。问题4是Dirichlet问题,尽管它是纯确定性的。在第7章和第8章介绍如何引入辅助的Ito扩散(即随机微分方程的解)来得到一个简单的、直观的、有用的随机解,它是随机位势论的基石。问题5是一个最优停时问题。第9章介绍用Ito扩散来表示在t时刻对策的状态,解相应的最优停时问题,它的解包含了位势论中的概念。比如,在第8章Dirichlet问题的解的广义化调和扩张。问题6是Ramsey于1928年提出的经典的控制问题的随机版本。第10章依据随机微分方程求解一般的随机控制问题,应用第7章和第8章的结果证明该问题可归纳成解(确定性的)Hamilton—Jacobi—Bellman方程。作为一个例子,求解了关于最优证券组合选择问题。 -
Measure Theory
-
集合与对应
《数学奥林匹克命题人讲座:集合与对应》分为两个部分,第一部分为集合,第二部分为对应,由以前写的两本小册子《集合及其子集》与《对应》合并后经适当修订而成。 集合论,是全部数学的基础。数学大师康托尔(Cantor)建立了基数、序型等重要概念,将研究从有限集推进到无限集,创立了集合论这一数学分支。近30年来,随着组合数学的蓬勃发展,关于有限集及其子集族,又有很多的研究,得出了很多重要而且优美的结果。“对应”也是一个极基本的数学概念。 -
拓扑学
《拓扑学(英文版)》是一部本科生学习拓扑空间的基础教程。引导读者很好的学习拓扑中有关几何的东西什么是最重要的。《拓扑学(英文版)》的内容分为三大部分,线和面、矩阵空间和拓扑空间,这些都将是为更进一步学习打下良好的基础,在讲解所熟悉领域的同时,自然而然地透露书不少新的知识点。