-
Introduction to Topology
For juniors and seniors of various majors, taking a first course in topology. This book introduces topology as an important and fascinating mathematics discipline. Students learn first the basics of point-set topology, which is enhanced by the real-world application of these concepts to science, economics, and engineering as well as other areas of mathematics. The second half of the book focuses on topics like knots, robotics, and graphs. The text is written in an accessible way for a range of undergraduates to understand the usefulness and importance of the application of topology to other fields. -
群与对称
《群与对称(英文版)》内容简介:numbers measure size, groups measure symmetry. the first statement comes as no surprise; after all, that is what numbers are for. the second will be exploited here in an attempt to introduce the vocabulary and some of the highlights of elementary group theory. a word about content and style seems appropriate. in this volume, the emphasis is on examples throughout, with a weighting towards the symmetry groups of solids and patterns. almost all the topics have been chosen so as to show groups in their most natural role, acting on (or permuting) the members ora set, whether it be the diagonals of a cube, the edges of a tree, or even some collection of subgroups of the given group. the material is divided into twenty-eight short chapters, each of which introduces a new result or idea.a glance at the contents will show that most of the mainstays of a first course arc here. the theorems of lagrange, cauchy, and sylow all have a chapter to themselves, as do the classifcation of finitely generated abelian groups, the enumeration of the finite rotation groups and the plane crystallographic groups, and the nielsen-schreier theorem. -
代数复杂性理论
《国外数学名著系列(影印版)25:代数复杂性理论》全面系统地讲述了代数复杂性理论的知识,书中包含了近400个习题和超过500个参考文献,对初学者和科研人员都有很高的参考价值。 -
模型论引论
《模型论引论》以现代观点介绍模型论,着重强调其在代数学中的应用。前半部分包括模型构造技巧的经典论述,如类型空间,素模型,饱和模型,可数模型,不可辨元等理论及其应用。在书中后半部分,作者首先介绍莫利的范畴性定理,随之讨论定性理论,着重论述Ω-稳定性理论。最后,作者举例阐明了赫鲁索夫斯基如何将这些理论运用于丢番图几何。《模型论引论》显著特色之一是包含一些其他入门型教材所未涉及的重要论题,如Ω-稳定群和强级小集的几何学。 -
多元统计分析及R语言建模
《暨南大学研究生教材•多元统计分析及R语言建模》共分15章,主要内容有:多元数据的收集和整理、多元数据的直观显示、线性与非线性模型及广义线性模型、判别分析、聚类分析、主成分分析、因子分析、对应分析、典型相关分析等常见的主流方法。《暨南大学研究生教材•多元统计分析及R语言建模》还参考国内外大量文献,系统地介绍了这些年在经济管理等领域应用颇广的一些较新方法,可作为统计学专业本科生和研究生的多元分析课程教材。《暨南大学研究生教材•多元统计分析及R语言建模》还可作为非统计学专业研究生的量化分析教材。 -
初等不等式的证明方法
韩京俊所著《初等不等式的证明方法》共分15章,选取300余个国内外 初等不等式的典型问题,以解析解题方法,并对部分问题加以拓展,不少例 题都配有较大篇幅的注解。《初等不等式的证明方法》的一大特色是从“一 名高中生的视角出发”,侧重解题与命题的思想和探索。本书可作为数学奥 林匹克训练的参考教材,供高中及以上文化程度的学生、教师使用,也可作 为不等式爱好者及从事初等不等式研究的相关专业人员阅读参考。