-
希尔伯特几何基础
第一章五组公理 第二章公理的相容性和互相独立性 第三章比例论 第四章平面中的面积论 第五章德沙格定理 第六章巴斯噶定理 第七章根据公理Ⅰ—Ⅳ的几何作图 本书属于科学元典丛书。本书是数学史上的一本名著,它以严格的公理化方法重新阐述了欧几里得几何学,为二十世纪数学的公理化运动开辟了道路。本书中译本第二版是根据德文最新版即第十二版翻译的,全书包括正文、德文第七版的俄译本序言与注解,以及五个附录和五个补篇。本书可供高等院校数学系师生、中学教师以及广大数学工作者阅读。本书译者是数学界老前辈著名数学家江泽涵,朱鼎勋。 -
近代欧氏几何学
几何学历史悠久,自欧几里得算起,已经有两千年。平面欧几里得几何,既有优美的图形,令人赏心悦目;又有众多的问题,供大家思考探索。它的论证严谨而优雅,命题美丽而精致。入门不难,魅力无限。因此吸引了大批业余的数学家与数学爱好者,在这里大显身手。平面欧氏几何学是一座丰富的宝藏,经过两千多年的采掘,大部分菁华已经落入人类手中。然而在上一世纪后半叶,又发现了一个 -
直观几何(下册)
《数学概览:直观几何(下册)》的目的是从直观、直觉的方面,呈现几何学之貌,“几何”在此书中得到非常广泛的解释,除了平面曲线的解析几何,曲线和曲面的微分几何之类的一般几何外,它还包括了共形映射、极小曲面、数的几何及其在数论中令人惊奇的应用、位形空间之几何、多丽体与曲面的拓扑等。《数学概览:直观几何(下册)》每一章都是从非常简单和基本的概念开始;然后向读者们演示,如何把困难的结果和理论归结为简单的东西,以及数学的不同部分是如何相互关联的。《数学概览:直观几何(下册)》还收录了由亚历山德罗夫写的关于拓扑学的附录,作为对《直观几何》关于拓扑学系统知识方面很好的补充。 -
直观几何(上册)
《数学概览:直观几何(上册)》的目的是从直观、直觉的方面,呈现几何学之貌,“几何”在《数学概览:直观几何(上册)》中得到非常广泛的解释,除了平面曲线的解析几何,曲线和曲面的微分几何之类的一般几何外,它还包括了共形映射、极小曲面、数的几何及其在数论中令人惊奇的应用、位形空间之几何、多面体与曲面的拓扑等。 -
雨林中的欧几里德
一部故事化的数学简史,古根海姆奖得主,最受欢迎的科普读物,连续六十周荣登《纽约时报》科普畅销书榜。 充满洞见、极富启发、富于思辩且饱含幽默,这绝然是一部睿智的作品。——哈佛大学科学史教授,比特·加里森 《雨林中的欧几里德》巧妙而富于创见地揭示了数学的实质与数学精神。——日本广岛市市长,秋叶忠利 约瑟夫开创了一种极具吸引力的写作方式,他在每日的现实生活与奥妙的数学世界之间架起了一座奇妙的桥梁。——哈佛大学数学系主任,约瑟夫·哈里斯 扬弃了复杂的证明和枯燥的专业语言,取而代之的是有趣的故事和丰富的经验,其结果便是智慧、奇妙和令人振奋。——《书业评论》 公元前300年,欧几里德在十三卷羊皮纸上写下了《几何原本》,那时逻辑推理已经相当成熟,然而类似如下的论辩又使得常规的数理逻辑陷入了自相矛盾之中。让一个物体移动任意一段距离,它必须首先到达一半距离处,然后是剩余距离的一半处,如此连续地重复着,物体则永远不得不到达某个剩余距离的一半处,所以,它永远也不可能移动全部的距离…… 怪异的无穷以及诸如此类的有关推理与逻辑的疑问,向数学提出了艰巨的挑战。乍眼看来这些疑问常常令人敬畏,然而在本书中,我们将透过数学证明和数理逻辑的表面形式,来洞见数学之本源——数学思想和逻辑思维的基本模式,并以此来对上述疑问作以解析。正如书中所言:数学好似一座繁茂的雨林,漫步其中我们所感受到的不仅是智慧的伟大,由深邃思想和严密论证而带来的数学之美以及涉步于数学旅程之中所伴随的愉悦更加令人流连。 -
几何天才的杰作
科学之美·几何天才的杰作伊斯兰图案设计,ISBN:9787535769213,作者:(英)萨顿 著,贺俊杰,铁红玲 译